455 research outputs found

    Automatic Synchronization of Multi-User Photo Galleries

    Full text link
    In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, limiting therefore the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.Comment: ACCEPTED to IEEE Transactions on Multimedi

    Chest Radiography Content-Based Image Retrieval

    Get PDF

    On Aggregation of Unsupervised Deep Binary Descriptor with Weak Bits

    Get PDF
    Despite the thrilling success achieved by existing binary descriptors, most of them are still in the mire of three limitations: 1) vulnerable to the geometric transformations; 2) incapable of preserving the manifold structure when learning binary codes; 3) NO guarantee to find the true match if multiple candidates happen to have the same Hamming distance to a given query. All these together make the binary descriptor less effective, given large-scale visual recognition tasks. In this paper, we propose a novel learning-based feature descriptor, namely Unsupervised Deep Binary Descriptor (UDBD), which learns transformation invariant binary descriptors via projecting the original data and their transformed sets into a joint binary space. Moreover, we involve a â„“2,1-norm loss term in the binary embedding process to gain simultaneously the robustness against data noises and less probability of mistakenly flipping bits of the binary descriptor, on top of it, a graph constraint is used to preserve the original manifold structure in the binary space. Furthermore, a weak bit mechanism is adopted to find the real match from candidates sharing the same minimum Hamming distance, thus enhancing matching performance. Extensive experimental results on public datasets show the superiority of UDBD in terms of matching and retrieval accuracy over state-of-the-arts

    Efficient Match Pair Retrieval for Large-scale UAV Images via Graph Indexed Global Descriptor

    Full text link
    SfM (Structure from Motion) has been extensively used for UAV (Unmanned Aerial Vehicle) image orientation. Its efficiency is directly influenced by feature matching. Although image retrieval has been extensively used for match pair selection, high computational costs are consumed due to a large number of local features and the large size of the used codebook. Thus, this paper proposes an efficient match pair retrieval method and implements an integrated workflow for parallel SfM reconstruction. First, an individual codebook is trained online by considering the redundancy of UAV images and local features, which avoids the ambiguity of training codebooks from other datasets. Second, local features of each image are aggregated into a single high-dimension global descriptor through the VLAD (Vector of Locally Aggregated Descriptors) aggregation by using the trained codebook, which remarkably reduces the number of features and the burden of nearest neighbor searching in image indexing. Third, the global descriptors are indexed via the HNSW (Hierarchical Navigable Small World) based graph structure for the nearest neighbor searching. Match pairs are then retrieved by using an adaptive threshold selection strategy and utilized to create a view graph for divide-and-conquer based parallel SfM reconstruction. Finally, the performance of the proposed solution has been verified using three large-scale UAV datasets. The test results demonstrate that the proposed solution accelerates match pair retrieval with a speedup ratio ranging from 36 to 108 and improves the efficiency of SfM reconstruction with competitive accuracy in both relative and absolute orientation
    • …
    corecore