1,372 research outputs found

    Simultaneous Bidirectional Link Selection in Full Duplex MIMO Systems

    Full text link
    In this paper, we consider a point to point full duplex (FD) MIMO communication system. We assume that each node is equipped with an arbitrary number of antennas which can be used for transmission or reception. With FD radios, bidirectional information exchange between two nodes can be achieved at the same time. In this paper we design bidirectional link selection schemes by selecting a pair of transmit and receive antenna at both ends for communications in each direction to maximize the weighted sum rate or minimize the weighted sum symbol error rate (SER). The optimal selection schemes require exhaustive search, so they are highly complex. To tackle this problem, we propose a Serial-Max selection algorithm, which approaches the exhaustive search methods with much lower complexity. In the Serial-Max method, the antenna pairs with maximum "obtainable SINR" at both ends are selected in a two-step serial way. The performance of the proposed Serial-Max method is analyzed, and the closed-form expressions of the average weighted sum rate and the weighted sum SER are derived. The analysis is validated by simulations. Both analytical and simulation results show that as the number of antennas increases, the Serial-Max method approaches the performance of the exhaustive-search schemes in terms of sum rate and sum SER

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Beamforming Optimization for Full-Duplex Wireless-powered MIMO Systems

    Get PDF
    We propose techniques for optimizing transmit beamforming in a full-duplex multiple-input-multiple-output (MIMO) wireless-powered communication system, which consists of two phases. In the first phase, the wireless-powered mobile station (MS) harvests energy using signals from the base station (BS), whereas in the second phase, both MS and BS communicate to each other in a full-duplex mode. When complete instantaneous channel state information (CSI) is available, the BS beamformer and the time-splitting (TS) parameter of energy harvesting are jointly optimized in order to obtain the BS-MS rate region. The joint optimization problem is non-convex, however, a computationally efficient optimum technique, based upon semidefinite relaxation and line-search, is proposed to solve the problem. A sub-optimum zero-forcing approach is also proposed, in which a closed-form solution of TS parameter is obtained. When only second-order statistics of transmit CSI is available, we propose to maximize the ergodic information rate at the MS, while maintaining the outage probability at the BS below a certain threshold. An upper bound for the outage probability is also derived and an approximate convex optimization framework is proposed for efficiently solving the underlying non-convex problem. Simulations demonstrate the advantages of the proposed methods over the sub-optimum and half-duplex ones.Comment: 14 pages, accepte

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table
    • …
    corecore