8,889 research outputs found

    Robust Processing of Natural Language

    Full text link
    Previous approaches to robustness in natural language processing usually treat deviant input by relaxing grammatical constraints whenever a successful analysis cannot be provided by ``normal'' means. This schema implies, that error detection always comes prior to error handling, a behaviour which hardly can compete with its human model, where many erroneous situations are treated without even noticing them. The paper analyses the necessary preconditions for achieving a higher degree of robustness in natural language processing and suggests a quite different approach based on a procedure for structural disambiguation. It not only offers the possibility to cope with robustness issues in a more natural way but eventually might be suited to accommodate quite different aspects of robust behaviour within a single framework.Comment: 16 pages, LaTeX, uses pstricks.sty, pstricks.tex, pstricks.pro, pst-node.sty, pst-node.tex, pst-node.pro. To appear in: Proc. KI-95, 19th German Conference on Artificial Intelligence, Bielefeld (Germany), Lecture Notes in Computer Science, Springer 199

    Verbal Response Modes in Action:Microrelationships as the Building Blocks of Relationship Role Dimensions

    Get PDF
    Dimensions of interpersonal relationships, such as attentiveness, directiveness, and presumptuousness, have typically been assessed through impressionistic ratings or by aggregate scores derived from coding of specific (e.g., verbal) behaviors. However, the meanings of these dimensions rest on the interpersonal microrelationships that are actually observed by the raters or coders. In this qualitative study, the way these global relationship qualities were built from microrelationships at the utterance level was examined in passages from one medical interaction. Applications of microrelationships to future communications research are suggested

    Rule-based relaxation of reference identification failures

    Get PDF

    A Personalized System for Conversational Recommendations

    Full text link
    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and number of interactions required to find a satisfactory item, as compared to a control group of users interacting with a non-adaptive version of the system

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    GEMINI: A Natural Language System for Spoken-Language Understanding

    Full text link
    Gemini is a natural language understanding system developed for spoken language applications. The paper describes the architecture of Gemini, paying particular attention to resolving the tension between robustness and overgeneration. Gemini features a broad-coverage unification-based grammar of English, fully interleaved syntactic and semantic processing in an all-paths, bottom-up parser, and an utterance-level parser to find interpretations of sentences that might not be analyzable as complete sentences. Gemini also includes novel components for recognizing and correcting grammatical disfluencies, and for doing parse preferences. This paper presents a component-by-component view of Gemini, providing detailed relevant measurements of size, efficiency, and performance.Comment: 8 pages, postscrip

    A Differentiable Generative Adversarial Network for Open Domain Dialogue

    Get PDF
    Paper presented at the IWSDS 2019: International Workshop on Spoken Dialogue Systems Technology, Siracusa, Italy, April 24-26, 2019This work presents a novel methodology to train open domain neural dialogue systems within the framework of Generative Adversarial Networks with gradient-based optimization methods. We avoid the non-differentiability related to text-generating networks approximating the word vector corresponding to each generated token via a top-k softmax. We show that a weighted average of the word vectors of the most probable tokens computed from the probabilities resulting of the top-k softmax leads to a good approximation of the word vector of the generated token. Finally we demonstrate through a human evaluation process that training a neural dialogue system via adversarial learning with this method successfully discourages it from producing generic responses. Instead it tends to produce more informative and variate ones.This work has been partially funded by the Basque Government under grant PRE_2017_1_0357, by the University of the Basque Country UPV/EHU under grant PIF17/310, and by the H2020 RIA EMPATHIC (Grant N: 769872)

    Utterance Selection Model of Language Change

    Full text link
    We present a mathematical formulation of a theory of language change. The theory is evolutionary in nature and has close analogies with theories of population genetics. The mathematical structure we construct similarly has correspondences with the Fisher-Wright model of population genetics, but there are significant differences. The continuous time formulation of the model is expressed in terms of a Fokker-Planck equation. This equation is exactly soluble in the case of a single speaker and can be investigated analytically in the case of multiple speakers who communicate equally with all other speakers and give their utterances equal weight. Whilst the stationary properties of this system have much in common with the single-speaker case, time-dependent properties are richer. In the particular case where linguistic forms can become extinct, we find that the presence of many speakers causes a two-stage relaxation, the first being a common marginal distribution that persists for a long time as a consequence of ultimate extinction being due to rare fluctuations.Comment: 21 pages, 17 figure
    • …
    corecore