8,309 research outputs found

    Training neural networks to encode symbols enables combinatorial generalization

    Get PDF
    Combinatorial generalization - the ability to understand and produce novel combinations of already familiar elements - is considered to be a core capacity of the human mind and a major challenge to neural network models. A significant body of research suggests that conventional neural networks can't solve this problem unless they are endowed with mechanisms specifically engineered for the purpose of representing symbols. In this paper we introduce a novel way of representing symbolic structures in connectionist terms - the vectors approach to representing symbols (VARS), which allows training standard neural architectures to encode symbolic knowledge explicitly at their output layers. In two simulations, we show that neural networks not only can learn to produce VARS representations, but in doing so they achieve combinatorial generalization in their symbolic and non-symbolic output. This adds to other recent work that has shown improved combinatorial generalization under specific training conditions, and raises the question of whether specific mechanisms or training routines are needed to support symbolic processing

    Targets for a Comparative Neurobiology of Language

    Get PDF
    One longstanding impediment to progress in understanding the neural basis of language is the development of model systems that retain language-relevant cognitive behaviors yet permit invasive cellular neuroscience methods. Recent experiments in songbirds suggest that this group may be developed into a powerful animal model, particularly for components of grammatical processing. It remains unknown, however, what a neuroscience of language perception may look like when instantiated at the cellular or network level. Here we deconstruct language perception into a minimal set of cognitive processes necessary to support grammatical processing. We then review the current state of our understanding about the neural mechanisms of these requisite cognitive processes in songbirds. We note where current knowledge is lacking, and suggest how these mechanisms may ultimately combine to support an emergent mechanism capable of processing grammatical structures of differing complexity
    • ā€¦
    corecore