18,063 research outputs found

    Extracting Biomolecular Interactions Using Semantic Parsing of Biomedical Text

    Full text link
    We advance the state of the art in biomolecular interaction extraction with three contributions: (i) We show that deep, Abstract Meaning Representations (AMR) significantly improve the accuracy of a biomolecular interaction extraction system when compared to a baseline that relies solely on surface- and syntax-based features; (ii) In contrast with previous approaches that infer relations on a sentence-by-sentence basis, we expand our framework to enable consistent predictions over sets of sentences (documents); (iii) We further modify and expand a graph kernel learning framework to enable concurrent exploitation of automatically induced AMR (semantic) and dependency structure (syntactic) representations. Our experiments show that our approach yields interaction extraction systems that are more robust in environments where there is a significant mismatch between training and test conditions.Comment: Appearing in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16

    Extracting protein-protein interactions from text using rich feature vectors and feature selection

    Get PDF
    Because of the intrinsic complexity of natural language, automatically extracting accurate information from text remains a challenge. We have applied rich featurevectors derived from dependency graphs to predict protein-protein interactions using machine learning techniques. We present the first extensive analysis of applyingfeature selection in this domain, and show that it can produce more cost-effective models. For the first time, our technique was also evaluated on several large-scalecross-dataset experiments, which offers a more realistic view on model performance. During benchmarking, we encountered several fundamental problems hindering comparability with other methods. We present a set of practical guidelines to set up ameaningful evaluation. Finally, we have analysed the feature sets from our experiments before and after feature selection, and evaluated the contribution of both lexical and syntacticinformation to our method. The gained insight will be useful to develop better performing methods in this domain

    Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective

    Full text link
    This paper presents a Lisp architecture for a portable NLP system, termed LAPNLP, for processing clinical notes. LAPNLP integrates multiple standard, customized and in-house developed NLP tools. Our system facilitates portability across different institutions and data systems by incorporating an enriched Common Data Model (CDM) to standardize necessary data elements. It utilizes UMLS to perform domain adaptation when integrating generic domain NLP tools. It also features stand-off annotations that are specified by positional reference to the original document. We built an interval tree based search engine to efficiently query and retrieve the stand-off annotations by specifying positional requirements. We also developed a utility to convert an inline annotation format to stand-off annotations to enable the reuse of clinical text datasets with inline annotations. We experimented with our system on several NLP facilitated tasks including computational phenotyping for lymphoma patients and semantic relation extraction for clinical notes. These experiments showcased the broader applicability and utility of LAPNLP.Comment: 6 pages, accepted by IEEE BIBM 2018 as regular pape

    Semantically linking molecular entities in literature through entity relationships

    Get PDF
    Background Text mining tools have gained popularity to process the vast amount of available research articles in the biomedical literature. It is crucial that such tools extract information with a sufficient level of detail to be applicable in real life scenarios. Studies of mining non-causal molecular relations attribute to this goal by formally identifying the relations between genes, promoters, complexes and various other molecular entities found in text. More importantly, these studies help to enhance integration of text mining results with database facts. Results We describe, compare and evaluate two frameworks developed for the prediction of non-causal or 'entity' relations (REL) between gene symbols and domain terms. For the corresponding REL challenge of the BioNLP Shared Task of 2011, these systems ranked first (57.7% F-score) and second (41.6% F-score). In this paper, we investigate the performance discrepancy of 16 percentage points by benchmarking on a related and more extensive dataset, analysing the contribution of both the term detection and relation extraction modules. We further construct a hybrid system combining the two frameworks and experiment with intersection and union combinations, achieving respectively high-precision and high-recall results. Finally, we highlight extremely high-performance results (F-score > 90%) obtained for the specific subclass of embedded entity relations that are essential for integrating text mining predictions with database facts. Conclusions The results from this study will enable us in the near future to annotate semantic relations between molecular entities in the entire scientific literature available through PubMed. The recent release of the EVEX dataset, containing biomolecular event predictions for millions of PubMed articles, is an interesting and exciting opportunity to overlay these entity relations with event predictions on a literature-wide scale
    corecore