33 research outputs found

    Scaling Configuration of Energy Harvesting Sensors with Reinforcement Learning

    Full text link
    With the advent of the Internet of Things (IoT), an increasing number of energy harvesting methods are being used to supplement or supplant battery based sensors. Energy harvesting sensors need to be configured according to the application, hardware, and environmental conditions to maximize their usefulness. As of today, the configuration of sensors is either manual or heuristics based, requiring valuable domain expertise. Reinforcement learning (RL) is a promising approach to automate configuration and efficiently scale IoT deployments, but it is not yet adopted in practice. We propose solutions to bridge this gap: reduce the training phase of RL so that nodes are operational within a short time after deployment and reduce the computational requirements to scale to large deployments. We focus on configuration of the sampling rate of indoor solar panel based energy harvesting sensors. We created a simulator based on 3 months of data collected from 5 sensor nodes subject to different lighting conditions. Our simulation results show that RL can effectively learn energy availability patterns and configure the sampling rate of the sensor nodes to maximize the sensing data while ensuring that energy storage is not depleted. The nodes can be operational within the first day by using our methods. We show that it is possible to reduce the number of RL policies by using a single policy for nodes that share similar lighting conditions.Comment: 7 pages, 5 figure

    Prediction of harvestable energy for self-powered wearable healthcare devices: filling a gap

    Get PDF
    Self-powered or autonomously driven wearable devices are touted to revolutionize the personalized healthcare industry, promising sustainable medical care for a large population of healthcare seekers. Current wearable devices rely on batteries for providing the necessary energy to the various electronic components. However, to ensure continuous and uninterrupted operation, these wearable devices need to scavenge energy from their surroundings. Different energy sources have been used to power wearable devices. These include predictable energy sources such as solar energy and radio frequency, as well as unpredictable energy from the human body. Nevertheless, these energy sources are either intermittent or deliver low power densities. Therefore, being able to predict or forecast the amount of harvestable energy over time enables the wearable to intelligently manage and plan its own energy resources more effectively. Several prediction approaches have been proposed in the context of energy harvesting wireless sensor network (EH-WSN) nodes. In their architectural design, these nodes are very similar to self-powered wearable devices. However, additional factors need to be considered to ensure a deeper market penetration of truly autonomous wearables for healthcare applications, which include low-cost, low-power, small-size, high-performance and lightweight. In this paper, we review the energy prediction approaches that were originally proposed for EH-WSN nodes and critique their application in wearable healthcare devices. Our comparison is based on their prediction accuracy, memory requirement, and execution time. We conclude that statistical techniques are better designed to meet the needs of short-term predictions, while long-term predictions require the hybridization of several linear and non-linear machine learning techniques. In addition to the recommendations, we discuss the challenges and future perspectives of these technique in our review

    Double smart energy harvesting system for self-powered industrial IoT

    Get PDF
    312 p. 335 p. (confidencial)Future factories would be based on the Industry 4.0 paradigm. IndustrialInternet of Things (IIoT) represent a part of the solution in this field. Asautonomous systems, powering challenges could be solved using energy harvestingtechnology. The present thesis work combines two alternatives of energy input andmanagement on a single architecture. A mini-reactor and an indoor photovoltaiccell as energy harvesters and a double power manager with AC/DC and DC/DCconverters controlled by a low power single controller. Furthermore, theaforementioned energy management is improved with artificial intelligencetechniques, which allows a smart and optimal energy management. Besides, theharvested energy is going to be stored in a low power supercapacitor. The workconcludes with the integration of these solutions making IIoT self-powered devices.IK4 Teknike

    SCALING UP TASK EXECUTION ON RESOURCE-CONSTRAINED SYSTEMS

    Get PDF
    The ubiquity of executing machine learning tasks on embedded systems with constrained resources has made efficient execution of neural networks on these systems under the CPU, memory, and energy constraints increasingly important. Different from high-end computing systems where resources are abundant and reliable, resource-constrained systems only have limited computational capability, limited memory, and limited energy supply. This dissertation focuses on how to take full advantage of the limited resources of these systems in order to improve task execution efficiency from different aspects of the execution pipeline. While the existing literature primarily aims at solving the problem by shrinking the model size according to the resource constraints, this dissertation aims to improve the execution efficiency for a given set of tasks from the following two aspects. Firstly, we propose SmartON, which is the first batteryless active event detection system that considers both the event arrival pattern as well as the harvested energy to determine when the system should wake up and what the duty cycle should be. Secondly, we propose Antler, which exploits the affinity between all pairs of tasks in a multitask inference system to construct a compact graph representation of the task set for a given overall size budget. To achieve the aforementioned algorithmic proposals, we propose the following hardware solutions. One is a controllable capacitor array that can expand the system’s energy storage on-the-fly. The other is a FRAM array that can accommodate multiple neural networks running on one system.Doctor of Philosoph

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    corecore