77,731 research outputs found

    Accelerating Reinforcement Learning for Reaching using Continuous Curriculum Learning

    Get PDF
    Reinforcement learning has shown great promise in the training of robot behavior due to the sequential decision making characteristics. However, the required enormous amount of interactive and informative training data provides the major stumbling block for progress. In this study, we focus on accelerating reinforcement learning (RL) training and improving the performance of multi-goal reaching tasks. Specifically, we propose a precision-based continuous curriculum learning (PCCL) method in which the requirements are gradually adjusted during the training process, instead of fixing the parameter in a static schedule. To this end, we explore various continuous curriculum strategies for controlling a training process. This approach is tested using a Universal Robot 5e in both simulation and real-world multi-goal reach experiments. Experimental results support the hypothesis that a static training schedule is suboptimal, and using an appropriate decay function for curriculum learning provides superior results in a faster way

    Masked Autoencoding for Scalable and Generalizable Decision Making

    Full text link
    We are interested in learning scalable agents for reinforcement learning that can learn from large-scale, diverse sequential data similar to current large vision and language models. To this end, this paper presents masked decision prediction (MaskDP), a simple and scalable self-supervised pretraining method for reinforcement learning (RL) and behavioral cloning (BC). In our MaskDP approach, we employ a masked autoencoder (MAE) to state-action trajectories, wherein we randomly mask state and action tokens and reconstruct the missing data. By doing so, the model is required to infer masked-out states and actions and extract information about dynamics. We find that masking different proportions of the input sequence significantly helps with learning a better model that generalizes well to multiple downstream tasks. In our empirical study, we find that a MaskDP model gains the capability of zero-shot transfer to new BC tasks, such as single and multiple goal reaching, and it can zero-shot infer skills from a few example transitions. In addition, MaskDP transfers well to offline RL and shows promising scaling behavior w.r.t. to model size. It is amenable to data-efficient finetuning, achieving competitive results with prior methods based on autoregressive pretraining

    Finding safe policies in model-based active learning

    Get PDF
    Task learning in robotics is a time-consuming process, and model-based reinforcement learning algorithms have been proposed to learn with just a small amount of experiences. However, reducing the number of experiences used to learn implies that the algorithm may overlook crucial actions required to get an optimal behavior. For example, a robot may learn simple policies that have a high risk of not reaching the goal because they often fall into dead-ends. We propose a new method that allows the robot to reason about dead-ends and their causes. Analyzing its current model and experiences, the robot will hypothesize the possible causes for the dead-end, and identify the actions that may cause it, marking them as dangerous. Afterwards, whenever a dangerous action is included into a plan which has a high risk of leading to a dead-end, the special action request teacher confirmation will be triggered by the robot to actively confirm with a teacher that the planned risky action should be executed. This method permits learning safer policies with the addition of just a few teacher demonstration requests. Experimental validation of the approach is provided in two different scenarios: a robotic assembly task and a domain from the international planning competition. Our approach gets success ratios very close to 1 in problems where previous approaches had high probabilities of reaching dead-endsPeer ReviewedPostprint (author’s final draft

    Predicting Pilot Behavior in Medium Scale Scenarios Using Game Theory and Reinforcement Learning

    Get PDF
    Effective automation is critical in achieving the capacity and safety goals of the Next Generation Air Traffic System. Unfortunately creating integration and validation tools for such automation is difficult as the interactions between automation and their human counterparts is complex and unpredictable. This validation becomes even more difficult as we integrate wide-reaching technologies that affect the behavior of different decision makers in the system such as pilots, controllers and airlines. While overt short-term behavior changes can be explicitly modeled with traditional agent modeling systems, subtle behavior changes caused by the integration of new technologies may snowball into larger problems and be very hard to detect. To overcome these obstacles, we show how integration of new technologies can be validated by learning behavior models based on goals. In this framework, human participants are not modeled explicitly. Instead, their goals are modeled and through reinforcement learning their actions are predicted. The main advantage to this approach is that modeling is done within the context of the entire system allowing for accurate modeling of all participants as they interact as a whole. In addition such an approach allows for efficient trade studies and feasibility testing on a wide range of automation scenarios. The goal of this paper is to test that such an approach is feasible. To do this we implement this approach using a simple discrete-state learning system on a scenario where 50 aircraft need to self-navigate using Automatic Dependent Surveillance-Broadcast (ADS-B) information. In this scenario, we show how the approach can be used to predict the ability of pilots to adequately balance aircraft separation and fly efficient paths. We present results with several levels of complexity and airspace congestion

    Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation

    Full text link
    Imitation learning is an effective approach for autonomous systems to acquire control policies when an explicit reward function is unavailable, using supervision provided as demonstrations from an expert, typically a human operator. However, standard imitation learning methods assume that the agent receives examples of observation-action tuples that could be provided, for instance, to a supervised learning algorithm. This stands in contrast to how humans and animals imitate: we observe another person performing some behavior and then figure out which actions will realize that behavior, compensating for changes in viewpoint, surroundings, object positions and types, and other factors. We term this kind of imitation learning "imitation-from-observation," and propose an imitation learning method based on video prediction with context translation and deep reinforcement learning. This lifts the assumption in imitation learning that the demonstration should consist of observations in the same environment configuration, and enables a variety of interesting applications, including learning robotic skills that involve tool use simply by observing videos of human tool use. Our experimental results show the effectiveness of our approach in learning a wide range of real-world robotic tasks modeled after common household chores from videos of a human demonstrator, including sweeping, ladling almonds, pushing objects as well as a number of tasks in simulation.Comment: Accepted at ICRA 2018, Brisbane. YuXuan Liu and Abhishek Gupta had equal contributio

    Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

    Full text link
    Imitation learning has traditionally been applied to learn a single task from demonstrations thereof. The requirement of structured and isolated demonstrations limits the scalability of imitation learning approaches as they are difficult to apply to real-world scenarios, where robots have to be able to execute a multitude of tasks. In this paper, we propose a multi-modal imitation learning framework that is able to segment and imitate skills from unlabelled and unstructured demonstrations by learning skill segmentation and imitation learning jointly. The extensive simulation results indicate that our method can efficiently separate the demonstrations into individual skills and learn to imitate them using a single multi-modal policy. The video of our experiments is available at http://sites.google.com/view/nips17intentionganComment: Paper accepted to NIPS 201
    • …
    corecore