310 research outputs found

    A review on structured scheme representation on data security application

    Get PDF
    With the rapid development in the era of Internet and networking technology, there is always a requirement to improve the security systems, which secure the transmitted data over an unsecured channel. The needs to increase the level of security in transferring the data always become the critical issue. Therefore, data security is a significant area in covering the issue of security, which refers to protect the data from unwanted forces and prevent unauthorized access to a communication. This paper presents a review of structured-scheme representation for data security application. There are five structured-scheme types, which can be represented as dual-scheme, triple-scheme, quad-scheme, octal-scheme and hexa-scheme. These structured-scheme types are designed to improve and strengthen the security of data on the application

    SecuCode: Intrinsic PUF Entangled Secure Wireless Code Dissemination for Computational RFID Devices

    Full text link
    The simplicity of deployment and perpetual operation of energy harvesting devices provides a compelling proposition for a new class of edge devices for the Internet of Things. In particular, Computational Radio Frequency Identification (CRFID) devices are an emerging class of battery-free, computational, sensing enhanced devices that harvest all of their energy for operation. Despite wireless connectivity and powering, secure wireless firmware updates remains an open challenge for CRFID devices due to: intermittent powering, limited computational capabilities, and the absence of a supervisory operating system. We present, for the first time, a secure wireless code dissemination (SecuCode) mechanism for CRFIDs by entangling a device intrinsic hardware security primitive Static Random Access Memory Physical Unclonable Function (SRAM PUF) to a firmware update protocol. The design of SecuCode: i) overcomes the resource-constrained and intermittently powered nature of the CRFID devices; ii) is fully compatible with existing communication protocols employed by CRFID devices in particular, ISO-18000-6C protocol; and ii) is built upon a standard and industry compliant firmware compilation and update method realized by extending a recent framework for firmware updates provided by Texas Instruments. We build an end-to-end SecuCode implementation and conduct extensive experiments to demonstrate standards compliance, evaluate performance and security.Comment: Accepted to the IEEE Transactions on Dependable and Secure Computin

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Intelligent Sensors Security

    Get PDF
    The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process

    A Survey on Lightweight Entity Authentication with Strong PUFs

    Get PDF
    Physically unclonable functions (PUFs) exploit the unavoidable manufacturing variations of an integrated circuit (IC). Their input-output behavior serves as a unique IC \u27fingerprint\u27. Therefore, they have been envisioned as an IC authentication mechanism, in particular the subclass of so-called strong PUFs. The protocol proposals are typically accompanied with two PUF promises: lightweight and an increased resistance against physical attacks. In this work, we review nineteen proposals in chronological order: from the original strong PUF proposal (2001) to the more complicated noise bifurcation and system of PUFs proposals (2014). The assessment is aided by a unied notation and a transparent framework of PUF protocol requirements

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    Blockchain-based privacy preservation for 5G-enabled drone communications

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record5G-enabled drones have potential applications in a variety of both military and civilian settings (e.g., monitoring and tracking of individuals in demonstrations and/or enforcing of social / physical distancing during pandemics such as COVID-19). Such applications generally involve the collection and dissemination of (massive) data from the drones to remote data centres for storage and analysis, for example via 5G networks. Consequently, there are security and privacy considerations underpinning 5G-enabled drone communications. We posit the potential of leveraging blockchain to facilitate privacy preservation, and therefore in this article we will review existing blockchain-based solutions after introducing the architecture for 5G-enabled drone communications and blockchain. We will also review existing legislation and data privacy regulations that need to be considered in the design of blockchain-based solutions, as well as identifying potential challenges and open issues which will hopefully inform future research agenda

    Treasure Island Security framework : A Generic Security Framework for public clouds

    Get PDF
    In this thesis we introduce a generic security framework for public clouds called Treasure Island Security framework that is designed to address the issues related to cloud computing security and specifically key-management in untrusted domains. Nowadays many cloud structure and services are provided but as an inevitable concomitant to these new products, security issues increase rapidly. Availability, integrity of data, lack of trust, confidentiality as well as security issues are also of great importance to cloud computing users; they may be more skeptical of the cloud services when they feel that they might lose the control over their data or the structures that the cloud provided for them.   Because of deferred control of data from customers to cloud providers and unknown number of third parties in between, it is almost impossible to apply traditional security methods. We present our security framework, with distributed key and sequential addressing in a simple abstract mode with a master server and adequate number of chunk servers. We assume a fixed chunk size model for large files and sequentially distribution file system with 4 separated key to decrypt/encrypt file. After reviewing the process, we analyze the Distributed Key and Sequentially Addressing Distributed file system and it's Security Risk Model. The focus of this thesis is on increasing security in untrusted domain especially in the cloud key management in public cloud. We discuss cryptographic approaches in key-management and suggest a novel cryptographic method for public cloud's key-management system based on forward-secure public key encryption, which supports a non-interactive publicly verifiable secret sharing scheme through a tree access structure. We believe that Treasure Island Security Framework can provide an increased secure environment in untrusted domains, like public cloud, in which users can securely reconstruct their secret-keys (e.g. lost passphrases). Finally, we discuss the advantages and benefits of Cloud Computing Security Framework with Distributed Key and Sequentially Addressing Distributed file system and cryptographic approaches and how it helps to improve the security levels in cloud systems.  M.S
    • …
    corecore