973 research outputs found

    A new approach to nonlinear constrained Tikhonov regularization

    Full text link
    We present a novel approach to nonlinear constrained Tikhonov regularization from the viewpoint of optimization theory. A second-order sufficient optimality condition is suggested as a nonlinearity condition to handle the nonlinearity of the forward operator. The approach is exploited to derive convergence rates results for a priori as well as a posteriori choice rules, e.g., discrepancy principle and balancing principle, for selecting the regularization parameter. The idea is further illustrated on a general class of parameter identification problems, for which (new) source and nonlinearity conditions are derived and the structural property of the nonlinearity term is revealed. A number of examples including identifying distributed parameters in elliptic differential equations are presented.Comment: 21 pages, to appear in Inverse Problem

    A Two-stage Method for Inverse Medium Scattering

    Full text link
    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer support, and one resolution enhancing step with mixed regularization. The first step is strictly direct and of sampling type, and faithfully detects the scatterer support. The second step is an innovative application of nonsmooth mixed regularization, and it accurately resolves the scatterer sizes as well as intensities. The model is efficiently solved by a semi-smooth Newton-type method. Numerical results for two- and three-dimensional examples indicate that the approach is accurate, computationally efficient, and robust with respect to data noise.Comment: 18 pages, 5 figure
    • …
    corecore