713 research outputs found

    Online Metric Allocation and Time-Varying Regularization

    Get PDF
    We introduce a general online allocation problem that connects several of the most fundamental problems in online optimization. Let be an -point metric space. Consider a resource that can be allocated in arbitrary fractions to the points of . At each time , a convex monotone cost function : [0, 1] → ℝ+ appears at some point ∈ . In response, an algorithm may change the allocation of the resource, paying movement cost as determined by the metric and service cost ( ), where is the fraction of the resource at at the end of time . For example, when the cost functions are () = , this is equivalent to randomized MTS, and when the cost functions are () = ∞·<1/, this is equivalent to fractional -server. Because of an inherent scale-freeness property of the problem, existing techniques for MTS and -server fail to achieve similar guarantees for metric allocation. To handle this, we consider a generalization of the online multiplicative update method where we decouple the rate at which a variable is updated from its value, resulting in interesting new dynamics. We use this to give an (log)-competitive algorithm for weighted star metrics. We then show how this corresponds to an extension of the online mirror descent framework to a setting where the regularizer is time-varying. Using this perspective, we further refine the guarantees of our algorithm. We also consider the case of non-convex cost functions. Using a simple ₂²-regularizer, we give tight bounds of Θ() on tree metrics, which imply deterministic and randomized competitive ratios of (2) and ( log ) respectively on arbitrary metrics
    corecore