1,176 research outputs found

    A Regression-Based Analytic Model for Dynamic Resource Provisioning of Multi-Tier Applications

    Full text link

    DEPAS: A Decentralized Probabilistic Algorithm for Auto-Scaling

    Full text link
    The dynamic provisioning of virtualized resources offered by cloud computing infrastructures allows applications deployed in a cloud environment to automatically increase and decrease the amount of used resources. This capability is called auto-scaling and its main purpose is to automatically adjust the scale of the system that is running the application to satisfy the varying workload with minimum resource utilization. The need for auto-scaling is particularly important during workload peaks, in which applications may need to scale up to extremely large-scale systems. Both the research community and the main cloud providers have already developed auto-scaling solutions. However, most research solutions are centralized and not suitable for managing large-scale systems, moreover cloud providers' solutions are bound to the limitations of a specific provider in terms of resource prices, availability, reliability, and connectivity. In this paper we propose DEPAS, a decentralized probabilistic auto-scaling algorithm integrated into a P2P architecture that is cloud provider independent, thus allowing the auto-scaling of services over multiple cloud infrastructures at the same time. Our simulations, which are based on real service traces, show that our approach is capable of: (i) keeping the overall utilization of all the instantiated cloud resources in a target range, (ii) maintaining service response times close to the ones obtained using optimal centralized auto-scaling approaches.Comment: Submitted to Springer Computin

    Hybrid Approach for Resource Provisioning in Cloud Computing

    Get PDF
    Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction. Elasticity of resources is considered as a key characteristic of cloud computing using this key characteristic; internet services are allocated the only-needed resources. This allocation of resources however should not be at the expense of the services’ performance. Allocation of resources without degrading performance is called resource provisioning. Resource provisioning does not only support the elasticity of resources, but also enhances cost efficiency and sustainability. The goal of this work is to investigate resource provisioning to increase the percentage of resources utilization without degrading the performance so that the power consumption of the cloud data centers is reduced. To achieve this goal, a hybrid-approach for resource provisioning is developed. In this approach, a list of virtual machines is requested, passed to a selection algorithm, sorting the machines according to their load, compute the threshold of the machines’ load, and combining the high load with low load from two different virtual machines on one super virtual machine. The approach was implemented in a simulator called CloudSim. It was used to run two sets of experiments. The first is to measure the power consumption of the data center as whole and hosts as well. And the second is concerned with the processing times and memory usage.  The results have shown that this approach outperforms traditional counterparts in resource provisioning. The results showed that the hybrid approach achieved reduction of (5.85 MW/s) in power consumption compared with the traditional counterparts for the whole data center, as well as reduction of (2.48 MW/s) in power consumption for the hosts

    Resource Provisioning for Multi-Tier Virtualized Server Applications

    Get PDF
    Virtualizing the x86-based data center creates a dynamic environment for server application deployment and resource sharing. Resource management in this environment is challenging as applications are under fluctuating workloads causing diverse resource demands across their tiers. Resource allocation adaptation is essential for high performance machine utilization. This paper presents feedback controllers that dynamically adjust the CPU allocations of multi-tier applications in order to adapt to workload changes by considering the resource coupling between utilizations of application components. Our experimental evaluation on a virtualized 3-tier Rubis server application shows that our techniques work effectively

    Self-Optimization of Internet Services with Dynamic Resource Provisioning

    Get PDF
    Self-optimization through dynamic resource provisioning is an appealing approach to tackle load variation in Internet services. It allows to assign or release resources to/from Internet services according to the varying load. However, dynamic resource provisioning raises several challenges among which: (i) How to plan a good capacity of an Internet service, i.e.~a necessary and sufficient amount of resource to handle the Internet service workload, (ii) How to manage both gradual load variation and load peaks in Internet services, (iii) How to prevent system oscillations in presence of potentially concurrent dynamic resource provisioning, and (iv) How to provide generic self-optimization that applies to different Internet services such as e-mail services, streaming servers or e-commerce web systems. This paper precisely answers these questions. It presents the design principles and implementation details of a self-optimization autonomic manager. It describes the results of an experimental evaluation of the self-optimization manager with a realistic e-commerce multi-tier web application running in a Linux cluster of computers. The experimental results show the usefulness of self-optimization in terms of end-user's perceived performance and system's operational costs, with a negligible overhead

    Taming Energy Costs of Large Enterprise Systems Through Adaptive Provisioning

    Get PDF
    One of the most pressing concerns in modern datacenter management is the rising cost of operation. Therefore, reducing variable expense, such as energy cost, has become a number one priority. However, reducing energy cost in large distributed enterprise system is an open research topic. These systems are commonly subjected to highly volatile workload processes and characterized by complex performance dependencies. This paper explicitly addresses this challenge and presents a novel approach to Taming Energy Costs of Larger Enterprise Systems (Tecless). Our adaptive provisioning methodology combines a low-level technical perspective on distributed systems with a high-level treatment of workload processes. More concretely, Tecless fuses an empirical bottleneck detection model with a statistical workload prediction model. Our methodology forecasts the system load online, which enables on-demand infrastructure adaption while continuously guaranteeing quality of service. In our analysis we show that the prediction of future workload allows adaptive provisioning with a power saving potential of up 25 percent of the total energy cost
    • …
    corecore