59 research outputs found

    Deep learning applications in the prostate cancer diagnostic pathway

    Get PDF
    Prostate cancer (PCa) is the second most frequently diagnosed cancer in men worldwide and the fifth leading cause of cancer death in men, with an estimated 1.4 million new cases in 2020 and 375,000 deaths. The risk factors most strongly associated to PCa are advancing age, family history, race, and mutations of the BRCA genes. Since the aforementioned risk factors are not preventable, early and accurate diagnoses are a key objective of the PCa diagnostic pathway. In the UK, clinical guidelines recommend multiparametric magnetic resonance imaging (mpMRI) of the prostate for use by radiologists to detect, score, and stage lesions that may correspond to clinically significant PCa (CSPCa), prior to confirmatory biopsy and histopathological grading. Computer-aided diagnosis (CAD) of PCa using artificial intelligence algorithms holds a currently unrealized potential to improve upon the diagnostic accuracy achievable by radiologist assessment of mpMRI, improve the reporting consistency between radiologists, and reduce reporting time. In this thesis, we build and evaluate deep learning-based CAD systems for the PCa diagnostic pathway, which address gaps identified in the literature. First, we introduce a novel patient-level classification framework, PCF, which uses a stacked ensemble of convolutional neural networks (CNNs) and support vector machines (SVMs) to assign a probability of having CSPCa to patients, using mpMRI and clinical features. Second, we introduce AutoProstate, a deep-learning powered framework for automated PCa assessment and reporting; AutoProstate utilizes biparametric MRI and clinical data to populate an automatic diagnostic report containing segmentations of the whole prostate, prostatic zones, and candidate CSPCa lesions, as well as several derived characteristics that are clinically valuable. Finally, as automatic segmentation algorithms have not yet reached the desired robustness for clinical use, we introduce interactive click-based segmentation applications for the whole prostate and prostatic lesions, with potential uses in diagnosis, active surveillance progression monitoring, and treatment planning

    Qualitative and quantitative whole-body MRI assessment of metastatic disease in patients with radio-recurrent prostate cancer

    Get PDF
    The thesis provides an overview of my research on the evaluation of whole-body magnetic resonance imaging (WB-MRI) as a single step imaging technique for assessment of metastasis in patients presenting with radio-recurrent prostate cancer (PCa). The work presented is the interim analysis of the LOCATE (localising occult prostate cancer metastasis with advanced imaging techniques) prospective clinical trial (study REC number: 15/LO/0776) Chapter 1 provides a literature review of available clinical and research imaging techniques for evaluation of metastatic disease in the radio-recurrent prostate cancer setting. It introduces the WB-MRI techniques employed in chapters 2-5, provides an overview of pathophysiological basis for WB-MRI signal changes and a review of current WB-MRI literature related to PCa. Chapter 2 presents the first part of my research, addressing the repeatability of lymph node and bone lesion size measurements conducted on various sequences on WB- MRI studies. This critical piece of work underpins the development of the reference standard applied for WB-MRI qualitative and quantitative analysis presented in chapters 3 and 4 respectively. Chapter 3 addresses quantitative imaging biomarkers namely signal fat fraction (sFF), apparent diffusion co-efficient (ADC) and signal enhancement ratio (SER) obtained from WB-MRI and assesses each as a classifier of nodal & bony metastatic disease status. Chapter 4 addresses the diagnostic accuracy of WB- MRI as a qualitative imaging modality evaluated by expert radiologists; compared against an enhanced reference standard (involving clinical and imaging 1-year follow-up). Sensitivity/specificity of WB- MRI is determined on a per-patient basis. Sensitivity/specificity analyses of conventional imaging is also provided. Finally, in this chapter, locked sequential read analysis for the whole-body MRI sequences is presented. Chapter 5 is a health economic analysis of imaging techniques evaluated in chapter 3. It was done in collaboration with the health economics team, in order to carry out a cost comparison analyses between whole body MRI and conventional imaging. Chapter 6 is a summary of main findings and discussions from chapters in this thesis. It also dwells on potential applications and future perspectives on some of the imaging techniques explored in this thesis

    Advances in Groupwise Image Registration

    Get PDF

    Advances in Groupwise Image Registration

    Get PDF

    INTEGRATION OF BIOMEDICAL IMAGING AND TRANSLATIONAL APPROACHES FOR MANAGEMENT OF HEAD AND NECK CANCER

    Get PDF
    The aim of the clinical component of this work was to determine whether the currently available clinical imaging tools can be integrated with radiotherapy (RT) platforms for monitoring and adaptation of radiation dose, prediction of tumor response and disease outcomes, and characterization of patterns of failure and normal tissue toxicity in head and neck cancer (HNC) patients with potentially curable tumors. In Aim 1, we showed that the currently available clinical imaging modalities can be successfully used to adapt RT dose based-on dynamic tumor response, predict oncologic disease outcomes, characterize RT-induced toxicity, and identify the patterns of disease failure. We used anatomical MRIs for the RT dose adaptation purpose. Our findings showed that after proper standardization of the immobilization and image acquisition techniques, we can achieve high geometric accuracy. These images can then be used to monitor the shrinkage of tumors during RT and optimize the clinical target volumes accordingly. Our results also showed that this MR-guided dose adaptation technique has a dosimetric advantage over the standard of care and was associated with a reduction in normal tissue doses that translated into a reduction of the odds of long-term RT-induced toxicity. In the second aim, we used quantitative MRIs to determine its benefit for prediction of oncologic outcomes and characterization of RT-induced normal tissue toxicity. Our findings showed that delta changes of apparent diffusion coefficient parameters derived from diffusion-weighted images at mid-RT can be used to predict local recurrence and recurrence free-survival. We also showed that Ktrans and Ve vascular parameters derived from dynamic contrast-enhanced MRIs can characterize the mandibular areas of osteoradionecrosis. In the final clinical aim, we used CT images of recurrence and baseline CT planning images to develop a methodology and workflow that involves the application of deformable image registration software as a tool to standardize image co-registration in addition to granular combined geometric- and dosimetric-based failure characterization to correctly attribute sites and causes of locoregional failure. We then successfully applied this methodology to identify the patterns of failure following postoperative and definitive IMRT in HNC patients. Using this methodology, we showed that most recurrences occurred in the central high dose regions for patients treated with definitive IMRT compared with mainly non-central high dose recurrences after postoperative IMRT. We also correlated recurrences with pretreatment FDG-PET and identified that most of the central high dose recurrences originated in an area that would be covered by a 10-mm margin on the volume of 50% of the maximum FDG uptake. In the translational component of this work, we integrated radiomic features derived from pre-RT CT images with whole-genome measurements using TCGA and TCIA data. Our results demonstrated a statistically significant associations between radiomic features characterizing different tumor phenotypes and different genomic features. These findings represent a promising potential towards non-invasively tract genomic changes in the tumor during treatment and use this information to adapt treatment accordingly. In the final project of this dissertation, we developed a high-throughput approach to identify effective systemic agents against aggressive head and neck tumors with poor prognosis like anaplastic thyroid cancer. We successfully identified three candidate drugs and performed extensive in vitro and in vivo validation using orthotopic and PDX models. Among these drugs, HDAC inhibitor and LBH-589 showed the most effective tumor growth inhibition that can be used in future clinical trials

    The impact of arterial input function determination variations on prostate dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic modeling: a multicenter data analysis challenge, part II

    Get PDF
    This multicenter study evaluated the effect of variations in arterial input function (AIF) determination on pharmacokinetic (PK) analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data using the shutter-speed model (SSM). Data acquired from eleven prostate cancer patients were shared among nine centers. Each center used a site-specific method to measure the individual AIF from each data set and submitted the results to the managing center. These AIFs, their reference tissue-adjusted variants, and a literature population-averaged AIF, were used by the managing center to perform SSM PK analysis to estimate Ktrans (volume transfer rate constant), ve (extravascular, extracellular volume fraction), kep (efflux rate constant), and Ď„i (mean intracellular water lifetime). All other variables, including the definition of the tumor region of interest and precontrast T1 values, were kept the same to evaluate parameter variations caused by variations in only the AIF. Considerable PK parameter variations were observed with within-subject coefficient of variation (wCV) values of 0.58, 0.27, 0.42, and 0.24 for Ktrans, ve, kep, and Ď„i, respectively, using the unadjusted AIFs. Use of the reference tissue-adjusted AIFs reduced variations in Ktrans and ve (wCV = 0.50 and 0.10, respectively), but had smaller effects on kep and Ď„i (wCV = 0.39 and 0.22, respectively). kep is less sensitive to AIF variation than Ktrans, suggesting it may be a more robust imaging biomarker of prostate microvasculature. With low sensitivity to AIF uncertainty, the SSM-unique Ď„i parameter may have advantages over the conventional PK parameters in a longitudinal study

    Challenges and Opportunities of End-to-End Learning in Medical Image Classification

    Get PDF
    Das Paradigma des End-to-End Lernens hat in den letzten Jahren die Bilderkennung revolutioniert, aber die klinische Anwendung hinkt hinterher. Bildbasierte computergestützte Diagnosesysteme basieren immer noch weitgehend auf hochtechnischen und domänen-spezifischen Pipelines, die aus unabhängigen regelbasierten Modellen bestehen, welche die Teilaufgaben der Bildklassifikation wiederspiegeln: Lokalisation von auffälligen Regionen, Merkmalsextraktion und Entscheidungsfindung. Das Versprechen einer überlegenen Entscheidungsfindung beim End-to-End Lernen ergibt sich daraus, dass domänenspezifische Zwangsbedingungen von begrenzter Komplexität entfernt werden und stattdessen alle Systemkomponenten gleichzeitig, direkt anhand der Rohdaten, und im Hinblick auf die letztendliche Aufgabe optimiert werden. Die Gründe dafür, dass diese Vorteile noch nicht den Weg in die Klinik gefunden haben, d.h. die Herausforderungen, die sich bei der Entwicklung Deep Learning-basierter Diagnosesysteme stellen, sind vielfältig: Die Tatsache, dass die Generalisierungsfähigkeit von Lernalgorithmen davon abhängt, wie gut die verfügbaren Trainingsdaten die tatsächliche zugrundeliegende Datenverteilung abbilden, erweist sich in medizinische Anwendungen als tiefgreifendes Problem. Annotierte Datensätze in diesem Bereich sind notorisch klein, da für die Annotation eine kostspielige Beurteilung durch Experten erforderlich ist und die Zusammenlegung kleinerer Datensätze oft durch Datenschutzauflagen und Patientenrechte erschwert wird. Darüber hinaus weisen medizinische Datensätze drastisch unterschiedliche Eigenschaften im Bezug auf Bildmodalitäten, Bildgebungsprotokolle oder Anisotropien auf, und die oft mehrdeutige Evidenz in medizinischen Bildern kann sich auf inkonsistente oder fehlerhafte Trainingsannotationen übertragen. Während die Verschiebung von Datenverteilungen zwischen Forschungsumgebung und Realität zu einer verminderten Modellrobustheit führt und deshalb gegenwärtig als das Haupthindernis für die klinische Anwendung von Lernalgorithmen angesehen wird, wird dieser Graben oft noch durch Störfaktoren wie Hardwarelimitationen oder Granularität von gegebenen Annotation erweitert, die zu Diskrepanzen zwischen der modellierten Aufgabe und der zugrunde liegenden klinischen Fragestellung führen. Diese Arbeit untersucht das Potenzial des End-to-End-Lernens in klinischen Diagnosesystemen und präsentiert Beiträge zu einigen der wichtigsten Herausforderungen, die derzeit eine breite klinische Anwendung verhindern. Zunächst wird der letzten Teil der Klassifikations-Pipeline untersucht, die Kategorisierung in klinische Pathologien. Wir demonstrieren, wie das Ersetzen des gegenwärtigen klinischen Standards regelbasierter Entscheidungen durch eine groß angelegte Merkmalsextraktion gefolgt von lernbasierten Klassifikatoren die Brustkrebsklassifikation im MRT signifikant verbessert und eine Leistung auf menschlichem Level erzielt. Dieser Ansatz wird weiter anhand von kardiologischer Diagnose gezeigt. Zweitens ersetzen wir, dem Paradigma des End-to-End Lernens folgend, das biophysikalische Modell, das für die Bildnormalisierung in der MRT angewandt wird, sowie die Extraktion handgefertigter Merkmale, durch eine designierte CNN-Architektur und liefern eine eingehende Analyse, die das verborgene Potenzial der gelernten Bildnormalisierung und einen Komplementärwert der gelernten Merkmale gegenüber den handgefertigten Merkmalen aufdeckt. Während dieser Ansatz auf markierten Regionen arbeitet und daher auf manuelle Annotation angewiesen ist, beziehen wir im dritten Teil die Aufgabe der Lokalisierung dieser Regionen in den Lernprozess ein, um eine echte End-to-End-Diagnose baserend auf den Rohbildern zu ermöglichen. Dabei identifizieren wir eine weitgehend vernachlässigte Zwangslage zwischen dem Streben nach der Auswertung von Modellen auf klinisch relevanten Skalen auf der einen Seite, und der Optimierung für effizientes Training unter Datenknappheit auf der anderen Seite. Wir präsentieren ein Deep Learning Modell, das zur Auflösung dieses Kompromisses beiträgt, liefern umfangreiche Experimente auf drei medizinischen Datensätzen sowie eine Serie von Toy-Experimenten, die das Verhalten bei begrenzten Trainingsdaten im Detail untersuchen, und publiziren ein umfassendes Framework, das unter anderem die ersten 3D-Implementierungen gängiger Objekterkennungsmodelle umfasst. Wir identifizieren weitere Hebelpunkte in bestehenden End-to-End-Lernsystemen, bei denen Domänenwissen als Zwangsbedingung dienen kann, um die Robustheit von Modellen in der medizinischen Bildanalyse zu erhöhen, die letztendlich dazu beitragen sollen, den Weg für die Anwendung in der klinischen Praxis zu ebnen. Zu diesem Zweck gehen wir die Herausforderung fehlerhafter Trainingsannotationen an, indem wir die Klassifizierungskompnente in der End-to-End-Objekterkennung durch Regression ersetzen, was es ermöglicht, Modelle direkt auf der kontinuierlichen Skala der zugrunde liegenden pathologischen Prozesse zu trainieren und so die Robustheit der Modelle gegenüber fehlerhaften Trainingsannotationen zu erhöhen. Weiter adressieren wir die Herausforderung der Input-Heterogenitäten, mit denen trainierte Modelle konfrontiert sind, wenn sie an verschiedenen klinischen Orten eingesetzt werden, indem wir eine modellbasierte Domänenanpassung vorschlagen, die es ermöglicht, die ursprüngliche Trainingsdomäne aus veränderten Inputs wiederherzustellen und damit eine robuste Generalisierung zu gewährleisten. Schließlich befassen wir uns mit dem höchst unsystematischen, aufwendigen und subjektiven Trial-and-Error-Prozess zum Finden von robusten Hyperparametern für einen gegebene Aufgabe, indem wir Domänenwissen in ein Set systematischer Regeln überführen, die eine automatisierte und robuste Konfiguration von Deep Learning Modellen auf einer Vielzahl von medizinischen Datensetzen ermöglichen. Zusammenfassend zeigt die hier vorgestellte Arbeit das enorme Potenzial von End-to-End Lernalgorithmen im Vergleich zum klinischen Standard mehrteiliger und hochtechnisierter Diagnose-Pipelines auf, und präsentiert Lösungsansätze zu einigen der wichtigsten Herausforderungen für eine breite Anwendung unter realen Bedienungen wie Datenknappheit, Diskrepanz zwischen der vom Modell behandelten Aufgabe und der zugrunde liegenden klinischen Fragestellung, Mehrdeutigkeiten in Trainingsannotationen, oder Verschiebung von Datendomänen zwischen klinischen Standorten. Diese Beiträge können als Teil des übergreifende Zieles der Automatisierung von medizinischer Bildklassifikation gesehen werden - ein integraler Bestandteil des Wandels, der erforderlich ist, um die Zukunft des Gesundheitswesens zu gestalten

    Diseases of the Brain, Head and Neck, Spine 2020–2023

    Get PDF
    This open access book offers an essential overview of brain, head and neck, and spine imaging. Over the last few years, there have been considerable advances in this area, driven by both clinical and technological developments. Written by leading international experts and teachers, the chapters are disease-oriented and cover all relevant imaging modalities, with a focus on magnetic resonance imaging and computed tomography. The book also includes a synopsis of pediatric imaging. IDKD books are rewritten (not merely updated) every four years, which means they offer a comprehensive review of the state-of-the-art in imaging. The book is clearly structured and features learning objectives, abstracts, subheadings, tables and take-home points, supported by design elements to help readers navigate the text. It will particularly appeal to general radiologists, radiology residents, and interventional radiologists who want to update their diagnostic expertise, as well as clinicians from other specialties who are interested in imaging for their patient care
    • …
    corecore