1,567 research outputs found

    Interactive energy minimizing segmentation frameworks

    Get PDF
    [no abstract

    A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70774Segmentation involves separating an object from the background in a given image. The use of image information alone often leads to poor segmentation results due to the presence of noise, clutter or occlusion. The introduction of shape priors in the geometric active contour (GAC) framework has proved to be an effective way to ameliorate some of these problems. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, using level-sets. Following the work of Leventon et al., we propose to revisit the use of PCA to introduce prior knowledge about shapes in a more robust manner. We utilize kernel PCA (KPCA) and show that this method outperforms linear PCA by allowing only those shapes that are close enough to the training data. In our segmentation framework, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description permits to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, occlusions, or smearing

    Region-based spatial and temporal image segmentation

    Get PDF
    This work discusses region-based representations for image and video sequence segmentation. It presents effective image segmentation techniques and demonstrates how these techniques may be integrated into algorithms that solve some of the motion segmentation problems. The region-based representation offers a way to perform a first level of abstraction and to reduce the number of elements to process with respect to the classical pixel-based representation. Motion segmentation is a fundamental technique for the analysis and the understanding of image sequences of real scenes. Motion segmentation 'describes' the sequence as sets of pixels moving coherently across one sequence with associated motions. This description is essential to the identification of the objects in the scene and to a more efficient manipulation of video sequences. This thesis presents a hybrid framework based on the combination of spatial and motion information for the segmentation of moving objects in image sequences accordingly with their motion. We formulate the problem as graph labelling over a region moving graph where nodes correspond coherently to moving atomic regions. This is a flexible high-level representation which individualizes moving independent objects. Starting from an over-segmentation of the image, the objects are formed by merging neighbouring regions together based on their mutual spatial and temporal similarity, taking spatial and motion information into account with the emphasis being on the second. Final segmentation is obtained by a spectral-based graph cuts approach. The initial phase for the moving object segmentation aims to reduce image noise without destroying the topological structure of the objects by anisotropic bilateral filtering. An initial spatial partition into a set of homogeneous regions is obtained by the watershed transform. Motion vector of each region is estimated by a variational approach. Next a region moving graph is constructed by a combination of normalized similarity between regions where mean intensity of the regions, gradient magnitude between regions, and motion information of the regions are considered. The motion similarity measure among regions is based on human perceptual characteristics. Finally, a spectral-based graph cut approach clusters and labels each moving region. The motion segmentation approach is based on a static image segmentation method proposed by the author of this dissertation. The main idea is to use atomic regions to guide a segmentation using the intensity and the gradient information through a similarity graph-based approach. This method produces simpler segmentations, less over-segmented and compares favourably with the state-of-the-art methods. To evaluate the segmentation results a new evaluation metric is proposed, which takes into attention the way humans perceive visual information. By incorporating spatial and motion information simultaneously in a region-based framework, we can visually obtain meaningful segmentation results. Experimental results of the proposed technique performance are given for different image sequences with or without camera motion and for still images. In the last case a comparison with the state-of-the-art approaches is made

    Tracking multiple objects using intensity-GVF snakes

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. Multiple object tracking remains a difficult task, characterised by a trade off between increasing the capturing range of edges of the object of interest, and decreasing the capturing range of other edges. We propose a new external force field which is calculated for every object independently. This new force field uses prior knowledge about the intensity of the object of interest. Using this extra information, this new force field helps in discriminating between edges of interest and other objects. For this new force field, the expected intensity of an object must be estimated. We propose a technique which calculates this estimation out of the image
    corecore