796 research outputs found

    Eulerian quasisymmetric functions

    Get PDF
    We introduce a family of quasisymmetric functions called {\em Eulerian quasisymmetric functions}, which specialize to enumerators for the joint distribution of the permutation statistics, major index and excedance number on permutations of fixed cycle type. This family is analogous to a family of quasisymmetric functions that Gessel and Reutenauer used to study the joint distribution of major index and descent number on permutations of fixed cycle type. Our central result is a formula for the generating function for the Eulerian quasisymmetric functions, which specializes to a new and surprising qq-analog of a classical formula of Euler for the exponential generating function of the Eulerian polynomials. This qq-analog computes the joint distribution of excedance number and major index, the only of the four important Euler-Mahonian distributions that had not yet been computed. Our study of the Eulerian quasisymmetric functions also yields results that include the descent statistic and refine results of Gessel and Reutenauer. We also obtain qq-analogs, (q,p)(q,p)-analogs and quasisymmetric function analogs of classical results on the symmetry and unimodality of the Eulerian polynomials. Our Eulerian quasisymmetric functions refine symmetric functions that have occurred in various representation theoretic and enumerative contexts including MacMahon's study of multiset derangements, work of Procesi and Stanley on toric varieties of Coxeter complexes, Stanley's work on chromatic symmetric functions, and the work of the authors on the homology of a certain poset introduced by Bj\"orner and Welker.Comment: Final version; to appear in Advances in Mathematics; 52 pages; this paper was originally part of the longer paper arXiv:0805.2416v1, which has been split into three paper

    Actions on permutations and unimodality of descent polynomials

    Get PDF
    We study a group action on permutations due to Foata and Strehl and use it to prove that the descent generating polynomial of certain sets of permutations has a nonnegative expansion in the basis {ti(1+t)n−1−2i}i=0m\{t^i(1+t)^{n-1-2i}\}_{i=0}^m, m=⌊(n−1)/2⌋m=\lfloor (n-1)/2 \rfloor. This property implies symmetry and unimodality. We prove that the action is invariant under stack-sorting which strengthens recent unimodality results of B\'ona. We prove that the generalized permutation patterns (13−2)(13-2) and (2−31)(2-31) are invariant under the action and use this to prove unimodality properties for a qq-analog of the Eulerian numbers recently studied by Corteel, Postnikov, Steingr\'{\i}msson and Williams. We also extend the action to linear extensions of sign-graded posets to give a new proof of the unimodality of the (P,ω)(P,\omega)-Eulerian polynomials of sign-graded posets and a combinatorial interpretations (in terms of Stembridge's peak polynomials) of the corresponding coefficients when expanded in the above basis. Finally, we prove that the statistic defined as the number of vertices of even height in the unordered decreasing tree of a permutation has the same distribution as the number of descents on any set of permutations invariant under the action. When restricted to the set of stack-sortable permutations we recover a result of Kreweras.Comment: 19 pages, revised version to appear in Europ. J. Combi

    Mahonian STAT on words

    Full text link
    In 2000, Babson and Steingr\'imsson introduced the notion of what is now known as a permutation vincular pattern, and based on it they re-defined known Mahonian statistics and introduced new ones, proving or conjecturing their Mahonity. These conjectures were proved by Foata and Zeilberger in 2001, and by Foata and Randrianarivony in 2006. In 2010, Burstein refined some of these results by giving a bijection between permutations with a fixed value for the major index and those with the same value for STAT, where STAT is one of the statistics defined and proved to be Mahonian in the 2000 Babson and Steingr\'imsson's paper. Several other statistics are preserved as well by Burstein's bijection. At the Formal Power Series and Algebraic Combinatorics Conference (FPSAC) in 2010, Burstein asked whether his bijection has other interesting properties. In this paper, we not only show that Burstein's bijection preserves the Eulerian statistic ides, but also use this fact, along with the bijection itself, to prove Mahonity of the statistic STAT on words we introduce in this paper. The words statistic STAT introduced by us here addresses a natural question on existence of a Mahonian words analogue of STAT on permutations. While proving Mahonity of our STAT on words, we prove a more general joint equidistribution result involving two six-tuples of statistics on (dense) words, where Burstein's bijection plays an important role

    Counting Dyck paths by area and rank

    Full text link
    The set of Dyck paths of length 2n2n inherits a lattice structure from a bijection with the set of noncrossing partitions with the usual partial order. In this paper, we study the joint distribution of two statistics for Dyck paths: \emph{area} (the area under the path) and \emph{rank} (the rank in the lattice). While area for Dyck paths has been studied, pairing it with this rank function seems new, and we get an interesting (q,t)(q,t)-refinement of the Catalan numbers. We present two decompositions of the corresponding generating function: one refines an identity of Carlitz and Riordan; the other refines the notion of γ\gamma-nonnegativity, and is based on a decomposition of the lattice of noncrossing partitions due to Simion and Ullman. Further, Biane's correspondence and a result of Stump allow us to conclude that the joint distribution of area and rank for Dyck paths equals the joint distribution of length and reflection length for the permutations lying below the nn-cycle (12...n)(12...n) in the absolute order on the symmetric group.Comment: 24 pages, 7 figures. Connections with work of C. Stump (arXiv:0808.2822v2) eliminated the need for 5 pages of proof in the first draf
    • …
    corecore