28 research outputs found

    A Refined Scaling Law for Spatially Coupled LDPC Codes Over the Binary Erasure Channel

    Get PDF
    We propose a refined scaling law to predict the finite-length performance in the waterfall region of spatially coupled low-density parity-check codes over the binary erasure channel. In particular, we introduce some improvements to the scaling law proposed by Olmos and Urbanke that result in a better agreement between the predicted and simulated frame error rate. We also show how the scaling law can be extended to predict the bit error rate performance.Comment: Paper accepted to IEEE Information Theory Workshop (ITW) 201

    Finite-Length Scaling of Spatially Coupled LDPC Codes Under Window Decoding Over the BEC

    Get PDF
    We analyze the finite-length performance of spatially coupled low-density parity-check (SC-LDPC) codes under window decoding over the binary erasure channel. In particular, we propose a refinement of the scaling law by Olmos and Urbanke for the frame error rate (FER) of terminated SC-LDPC ensembles under full belief propagation (BP) decoding. The refined scaling law models the decoding process as two independent Ornstein-Uhlenbeck processes, in correspondence to the two decoding waves that propagate toward the center of the coupled chain for terminated SC-LDPC codes. We then extend the proposed scaling law to predict the performance of (terminated) SC-LDPC code ensembles under the more practical sliding window decoding. Finally, we extend this framework to predict the bit error rate (BER) and block error rate (BLER) of SC-LDPC code ensembles. The proposed scaling law yields very accurate predictions of the FER, BLER, and BER for both full BP and window decoding.Comment: Published in IEEE Transactions on Communications (Early Access). This paper was presented in part at the IEEE Information Theory Workshop (ITW), Visby, Sweden, August 2019 (arXiv:1904.10410

    Finite-Length Scaling Laws for Spatially-Coupled LDPC Codes

    Get PDF
    This thesis concerns predicting the finite-length error-correcting performance of spatially-coupled low-density parity-check (SC-LDPC) code ensembles over the binary erasure channel. SC-LDPC codes are a very powerful class of codes; their use in practical communication systems, however, requires the system designer to specify a considerable number of code and decoder parameters, all of which affect both the code’s error-correcting capability and the system’s memory, energy, and latency requirements. Navigating the space of the associated trade-offs is challenging. The aim of the finite-length scaling laws proposed in this thesis is to facilitate code and decoder parameter optimization by providing a way to predict the code’s error-rate performance without resorting to Monte-Carlo simulations for each combination of code/decoder and channel parameters.First, we tackle the problem of predicting the frame, bit, and block error rate of SC-LDPC code ensembles over the binary erasure channel under both belief propagation (BP) decoding and sliding window decoding when the maximum number of decoding iterations is unlimited. The scaling laws we develop provide very accurate predictions of the error rates.Second, we derive a scaling law to accurately predict the bit and block error rate of SC-LDPC code ensembles with doping, a technique relevant for streaming applications for limiting the inherent rate loss of SC-LDPC codes. We then use the derived scaling law for code parameter optimization and show that doping can offer a way to achieve better transmission rates for the same target bit error rate than is possible without doping.Last, we address the most challenging (and most practically relevant) case where the maximum number of decoding iterations is limited, both for BP and sliding window decoding. The resulting predictions are again very accurate.Together, these contributions make finite-length SC-LDPC code and decoder parameter optimization via finite-length scaling laws feasible for the design of practical communication systems

    On Doped SC-LDPC Codes for Streaming

    Get PDF
    In streaming applications, doping improves the performance of spatially-coupled low-density parity-check (SC-LDPC) codes by creating reduced-degree check nodes in the coupled chain. We formulate a scaling law to predict the bit and block error rate of periodically-doped semi-infinite SC-LDPC code ensembles streamed over the binary erasure channel under sliding window decoding for a given finite component block length. The scaling law assumes that with some probability doping is equivalent to full termination and triggers two decoding waves; otherwise, decoding performs as if the coupled chain had not been doped at all. We approximate that probability and use the derived scaling laws to predict the error rates of SC-LDPC code ensembles in the presence of doping. The proposed scaling law provides accurate error rate predictions. We further use it to show that in streaming applications periodic doping can yield higher rates than periodic full termination for the same error-correcting performance

    Spatially coupled generalized LDPC codes: asymptotic analysis and finite length scaling

    Get PDF
    Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improved error floor performance, due to better minimum distance and trapping set properties, at a cost of some increased decoding complexity. In this paper, we study spatially coupled generalized low-density parity-check (SC-GLDPC) codes and present a comprehensive analysis of these codes, including: (1) an iterative decoding threshold analysis of SC-GLDPC code ensembles demonstrating capacity approaching thresholds via the threshold saturation effect; (2) an asymptotic analysis of the minimum distance and free distance properties of SC-GLDPC code ensembles, demonstrating that the ensembles are asymptotically good; and (3) an analysis of the finite-length scaling behavior of both GLDPC block codes and SC-GLDPC codes based on a peeling decoder (PD) operating on a binary erasure channel (BEC). Results are compared to GLDPC block codes, and the advantages and disadvantages of SC-GLDPC codes are discussed.This work was supported in part by the National Science Foundation under Grant ECCS-1710920, Grant OIA-1757207, and Grant HRD-1914635; in part by the European Research Council (ERC) through the European Union's Horizon 2020 research and innovation program under Grant 714161; and in part by the Spanish Ministry of Science, Innovation and University under Grant TEC2016-78434-C3-3-R (AEI/FEDER, EU)

    On generalized LDPC codes for ultra reliable communication

    Get PDF
    Ultra reliable low latency communication (URLLC) is an important feature in future mobile communication systems, as they will require high data rates, large system capacity and massive device connectivity [11]. To meet such stringent requirements, many error-correction codes (ECC)s are being investigated; turbo codes, low density parity check (LDPC) codes, polar codes and convolutional codes [70, 92, 38], among many others. In this work, we present generalized low density parity check (GLDPC) codes as a promising candidate for URLLC. Our proposal is based on a novel class of GLDPC code ensembles, for which new analysis tools are proposed. We analyze the trade-o_ between coding rate and asymptotic performance of a class of GLDPC codes constructed by including a certain fraction of generalized constraint (GC) nodes in the graph. To incorporate both bounded distance (BD) and maximum likelihood (ML) decoding at GC nodes into our analysis without resorting to multi-edge type of degree distribution (DD)s, we propose the probabilistic peeling decoding (P-PD) algorithm, which models the decoding step at every GC node as an instance of a Bernoulli random variable with a successful decoding probability that depends on both the GC block code as well as its decoding algorithm. The P-PD asymptotic performance over the BEC can be efficiently predicted using standard techniques for LDPC codes such as Density evolution (DE) or the differential equation method. We demonstrate that the simulated P-PD performance accurately predicts the actual performance of the GLPDC code under ML decoding at GC nodes. We illustrate our analysis for GLDPC code ensembles with regular and irregular DDs. This design methodology is applied to construct practical codes for URLLC. To this end, we incorporate to our analysis the use of quasi-cyclic (QC) structures, to mitigate the code error floor and facilitate the code very large scale integration (VLSI) implementation. Furthermore, for the additive white Gaussian noise (AWGN) channel, we analyze the complexity and performance of the message passing decoder with various update rules (including standard full-precision sum product and min-sum algorithms) and quantization schemes. The block error rate (BLER) performance of the proposed GLDPC codes, combined with a complementary outer code, is shown to outperform a variety of state-of-the-art codes, for URLLC, including LDPC codes, polar codes, turbo codes and convolutional codes, at similar complexity rates.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Juan José Murillo Fuentes.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Javier Valls Coquilla

    Low-Density Parity-Check Coded High-order Modulation Schemes

    Full text link
    In this thesis, we investigate how to support reliable data transmissions at high speeds in future communication systems, such as 5G/6G, WiFi, satellite, and optical communications. One of the most fundamental problems in these communication systems is how to reliably transmit information with a limited number of resources, such as power and spectral. To obtain high spectral efficiency, we use coded modulation (CM), such as bit-interleaved coded modulation (BICM) and delayed BICM (DBICM). To be specific, BICM is a pragmatic implementation of CM which has been largely adopted in both industry and academia. While BICM approaches CM capacity at high rates, the capacity gap between BICM and CM is still noticeable at lower code rates. To tackle this problem, DBICM, as a variation of BICM, introduces a delay module to create a dependency between multiple codewords, which enables us to exploit extrinsic information from the decoded delayed sub-blocks to improve the detection of the undelayed sub-blocks. Recent work shows that DBICM improves capacity over BICM. In addition, BICM and DBICM schemes protect each bit-channel differently, which is often referred to as the unequal error protection (UEP) property. Therefore, bit mapping designs are important for constructing pragmatic BICM and DBICM. To provide reliable communication, we have jointly designed bit mappings in DBICM and irregular low-density parity-check (LDPC) codes. For practical considerations, spatially coupled LDPC (SC-LDPC) codes have been considered as well. Specifically, we have investigated the joint design of the multi-chain SC-LDPC and the BICM bit mapper. In addition, the design of SC-LDPC codes with improved decoding threshold performance and reduced rate loss has been investigated in this thesis as well. The main body of this thesis consists of three parts. In the first part, considering Gray-labeled square M-ary quadrature amplitude modulation (QAM) constellations, we investigate the optimal delay scheme with the largest spectrum efficiency of DBICM for a fixed maximum number of delayed time slots and a given signal-to-noise ratio. Furthermore, we jointly optimize degree distributions and channel assignments of LDPC codes using protograph-based extrinsic information transfer charts. In addition, we proposed a constrained progressive edge growth-like algorithm to jointly construct LDPC codes and bit mappings for DBICM, taking the capacity of each bit-channel into account. Simulation results demonstrate that the designed LDPC-coded DBICM systems significantly outperform LDPC-coded BICM systems. In the second part, we proposed a windowed decoding algorithm for DBICM, which uses the extrinsic information of both the decoded delayed and undelayed sub-blocks, to improve the detection for all sub-blocks. We show that the proposed windowed decoding significantly outperforms the original decoding, demonstrating the effectiveness of the proposed decoding algorithm. In the third part, we apply multi-chain SC-LDPC to BICM. We investigate various connections for multi-chain SC-LDPC codes and bit mapping designs and analyze the performance of the multi-chain SC-LDPC codes over the equivalent binary erasure channels via density evolution. Numerical results demonstrate the superiority of the proposed design over existing connected-chain ensembles and over single-chain ensembles with the existing bit mapping design

    Capacity-Achieving Coding Mechanisms: Spatial Coupling and Group Symmetries

    Get PDF
    The broad theme of this work is in constructing optimal transmission mechanisms for a wide variety of communication systems. In particular, this dissertation provides a proof of threshold saturation for spatially-coupled codes, low-complexity capacity-achieving coding schemes for side-information problems, a proof that Reed-Muller and primitive narrow-sense BCH codes achieve capacity on erasure channels, and a mathematical framework to design delay sensitive communication systems. Spatially-coupled codes are a class of codes on graphs that are shown to achieve capacity universally over binary symmetric memoryless channels (BMS) under belief-propagation decoder. The underlying phenomenon behind spatial coupling, known as “threshold saturation via spatial coupling”, turns out to be general and this technique has been applied to a wide variety of systems. In this work, a proof of the threshold saturation phenomenon is provided for irregular low-density parity-check (LDPC) and low-density generator-matrix (LDGM) ensembles on BMS channels. This proof is far simpler than published alternative proofs and it remains as the only technique to handle irregular and LDGM codes. Also, low-complexity capacity-achieving codes are constructed for three coding problems via spatial coupling: 1) rate distortion with side-information, 2) channel coding with side-information, and 3) write-once memory system. All these schemes are based on spatially coupling compound LDGM/LDPC ensembles. Reed-Muller and Bose-Chaudhuri-Hocquengham (BCH) are well-known algebraic codes introduced more than 50 years ago. While these codes are studied extensively in the literature it wasn’t known whether these codes achieve capacity. This work introduces a technique to show that Reed-Muller and primitive narrow-sense BCH codes achieve capacity on erasure channels under maximum a posteriori (MAP) decoding. Instead of relying on the weight enumerators or other precise details of these codes, this technique requires that these codes have highly symmetric permutation groups. In fact, any sequence of linear codes with increasing blocklengths whose rates converge to a number between 0 and 1, and whose permutation groups are doubly transitive achieve capacity on erasure channels under bit-MAP decoding. This pro-vides a rare example in information theory where symmetry alone is sufficient to achieve capacity. While the channel capacity provides a useful benchmark for practical design, communication systems of the day also demand small latency and other link layer metrics. Such delay sensitive communication systems are studied in this work, where a mathematical framework is developed to provide insights into the optimal design of these systems
    corecore