205 research outputs found

    An Analysis of ZVP-Attack on ECC Cryptosystems

    Get PDF
    Elliptic curve cryptography (ECC) is an efficient public cryptosystem with a short key size. For this reason it is suitable for implementing on memory-constraint devices such as smart cards, mobile devices, etc. However, these devices leak information about their private key through side channels (power consumption, electromagnetic radiation, timing etc) during cryptographic processing. In this paper we have examined countermeasures against a specific class of side channel attacks (power analysis) called Zero-Value Point Attack (ZVP), using elliptic curve isomorphism and isogeny. We found that these methods are an efficient way of securing cryptographic devices using ECC against ZVP attack. Our main contribution is to extend the work of Akishita and Takagi [3,2] to binary fields. We also provide a more detail analysis of the ZVP attack over prime fields

    Design and analysis of efficient and secure elliptic curve cryptoprocessors

    Get PDF
    Elliptic Curve Cryptosystems have attracted many researchers and have been included in many standards such as IEEE, ANSI, NIST, SEC and WTLS. The ability to use smaller keys and computationally more efficient algorithms compared with earlier public key cryptosystems such as RSA and ElGamal are two main reasons why elliptic curve cryptosystems are becoming more popular. They are considered to be particularly suitable for implementation on smart cards or mobile devices. Power Analysis Attacks on such devices are considered serious threat due to the physical characteristics of these devices and their use in potentially hostile environments. This dissertation investigates elliptic curve cryptoprocessor architectures for curves defined over GF(2m) fields. In this dissertation, new architectures that are suitable for efficient computation of scalar multiplications with resistance against power analysis attacks are proposed and their performance evaluated. This is achieved by exploiting parallelism and randomized processing techniques. Parallelism and randomization are controlled at different levels to provide more efficiency and security. Furthermore, the proposed architectures are flexible enough to allow designers tailor performance and hardware requirements according to their performance and cost objectives. The proposed architectures have been modeled using VHDL and implemented on FPGA platform
    corecore