74 research outputs found

    Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element

    Full text link
    When W is a finite reflection group, the noncrossing partition lattice NCP_W of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in NCP_W as a generalised Fuss-Catalan number, depending on the invariant degrees of W. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of NCP_W as fibers of a Lyashko-Looijenga covering (LL), constructed from the geometry of the discriminant hypersurface of W. We study algebraically the map LL, describing the factorisations of its discriminant and its Jacobian. As byproducts, we generalise a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorisations of a Coxeter element of W.Comment: 18 pages. Version 2 : corrected typos and improved presentation. Version 3 : corrected typos, added illustrated example. To appear in Journal of Algebraic Combinatoric

    Generalized Goulden-Yong duals and signed minimal factorizations

    Full text link
    We show the equivalence between one-way reflections and relative projective representations. We construct generalized Goulden-Yong duals using reverse Garside element actions and folded chord diagrams. We give two applications of the generalized Goulden-Yong duals: constructing generalized Pr\"{u}fer codes and counting signed factorizations using the matrix-tree theorem.Comment: 36 pages, 15 figure

    The Generalized Cluster Complex: Refined Enumeration of Faces and Related Parking Spaces

    Full text link
    The generalized cluster complex was introduced by Fomin and Reading, as a natural extension of the Fomin-Zelevinsky cluster complex coming from finite type cluster algebras. In this work, to each face of this complex we associate a parabolic conjugacy class of the underlying finite Coxeter group. We show that the refined enumeration of faces (respectively, positive faces) according to this data gives an explicit formula in terms of the corresponding characteristic polynomial (equivalently, in terms of Orlik-Solomon exponents). This characteristic polynomial originally comes from the theory of hyperplane arrangements, but it is conveniently defined via the parabolic Burnside ring. This makes a connection with the theory of parking spaces: our results eventually rely on some enumeration of chains of noncrossing partitions that were obtained in this context. The precise relations between the formulas counting faces and the one counting chains of noncrossing partitions are combinatorial reciprocities, generalizing the one between Narayana and Kirkman numbers
    • …
    corecore