40,996 research outputs found

    Flyover-noise measurement and prediction

    Get PDF
    Details are presented for the measurement and prediction of aircraft flyover noise to be used for certification, research and development, community noise surveys, airport monitors, and pass fail criteria. Test details presented are applicable to all types of aircraft, both large and small, and the use of Federal Aviation Regulations (FAR) Part 36 (ref. 1) is emphasized. Accuracy of noise measurements is important. Thus, a pass-fail criterion should be used for all noise measurements. Finally, factors which influence the sound propagation and noise prediction procedures, such as atmospheric and ground effects, are also presented

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    Ultrafast optical ranging using microresonator soliton frequency combs

    Get PDF
    Light detection and ranging (LIDAR) is critical to many fields in science and industry. Over the last decade, optical frequency combs were shown to offer unique advantages in optical ranging, in particular when it comes to fast distance acquisition with high accuracy. However, current comb-based concepts are not suited for emerging high-volume applications such as drone navigation or autonomous driving. These applications critically rely on LIDAR systems that are not only accurate and fast, but also compact, robust, and amenable to cost-efficient mass-production. Here we show that integrated dissipative Kerr-soliton (DKS) comb sources provide a route to chip-scale LIDAR systems that combine sub-wavelength accuracy and unprecedented acquisition speed with the opportunity to exploit advanced photonic integration concepts for wafer-scale mass production. In our experiments, we use a pair of free-running DKS combs, each providing more than 100 carriers for massively parallel synthetic-wavelength interferometry. We demonstrate dual-comb distance measurements with record-low Allan deviations down to 12 nm at averaging times of 14 μ\mus as well as ultrafast ranging at unprecedented measurement rates of up to 100 MHz. We prove the viability of our technique by sampling the naturally scattering surface of air-gun projectiles flying at 150 m/s (Mach 0.47). Combining integrated dual-comb LIDAR engines with chip-scale nanophotonic phased arrays, the approach could allow widespread use of compact ultrafast ranging systems in emerging mass applications.Comment: 9 pages, 3 figures, Supplementary information is attached in 'Ancillary files

    Electro-optic dual-comb interferometry over 40-nm bandwidth

    Full text link
    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy
    corecore