15,606 research outputs found

    Agile Requirements Engineering: A systematic literature review

    Get PDF
    Nowadays, Agile Software Development (ASD) is used to cope with increasing complexity in system development. Hybrid development models, with the integration of User-Centered Design (UCD), are applied with the aim to deliver competitive products with a suitable User Experience (UX). Therefore, stakeholder and user involvement during Requirements Engineering (RE) are essential in order to establish a collaborative environment with constant feedback loops. The aim of this study is to capture the current state of the art of the literature related to Agile RE with focus on stakeholder and user involvement. In particular, we investigate what approaches exist to involve stakeholder in the process, which methodologies are commonly used to present the user perspective and how requirements management is been carried out. We conduct a Systematic Literature Review (SLR) with an extensive quality assessment of the included studies. We identified 27 relevant papers. After analyzing them in detail, we derive deep insights to the following aspects of Agile RE: stakeholder and user involvement, data gathering, user perspective, integrated methodologies, shared understanding, artifacts, documentation and Non-Functional Requirements (NFR). Agile RE is a complex research field with cross-functional influences. This study will contribute to the software development body of knowledge by assessing the involvement of stakeholder and user in Agile RE, providing methodologies that make ASD more human-centric and giving an overview of requirements management in ASD.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    User Story Software Estimation:a Simplification of Software Estimation Model with Distributed Extreme Programming Estimation Technique

    Get PDF
    Software estimation is an area of software engineering concerned with the identification, classification and measurement of features of software that affect the cost of developing and sustaining computer programs [19]. Measuring the software through software estimation has purpose to know the complexity of the software, estimate the human resources, and get better visibility of execution and process model. There is a lot of software estimation that work sufficiently in certain conditions or step in software engineering for example measuring line of codes, function point, COCOMO, or use case points. This paper proposes another estimation technique called Distributed eXtreme Programming Estimation (DXP Estimation). DXP estimation provides a basic technique for the team that using eXtreme Programming method in onsite or distributed development. According to writer knowledge this is a first estimation technique that applied into agile method in eXtreme Programming

    <i>Trace++</i>: A Traceability Approach for Agile Software Engineering

    Get PDF
    Agile methodologies have been introduced as an alternative to traditional software engineering methodologies. However, despite the advantages of using agile methodologies, the transition between traditional and agile methodologies is not an easy task. There are several problems associated with the use of agile methodologies. Examples of these problems are related to (i) lack of metrics to measure the amount of rework that occurs per sprint, (ii) interruption of a project after several iterations, (iii) changes in the requirements, (iv) lack of documentation, and (v) lack of management control. In this paper we present Trace++, a traceability technique that extends traditional traceability relationships with extra information in order to support the transition between traditional and agile software development. The use of Trace++ has been evaluated in two real projects of different software development companies to measure the benefits of using Trace++ to support agile software development

    Estimating, planning and managing Agile Web development projects under a value-based perspective

    Get PDF
    Context: The processes of estimating, planning and managing are crucial for software development projects, since the results must be related to several business strategies. The broad expansion of the Internet and the global and interconnected economy make Web development projects be often characterized by expressions like delivering as soon as possible, reducing time to market and adapting to undefined requirements. In this kind of environment, traditional methodologies based on predictive techniques sometimes do not offer very satisfactory results. The rise of Agile methodologies and practices has provided some useful tools that, combined with Web Engineering techniques, can help to establish a framework to estimate, manage and plan Web development projects. Objective: This paper presents a proposal for estimating, planning and managing Web projects, by combining some existing Agile techniques with Web Engineering principles, presenting them as an unified framework which uses the business value to guide the delivery of features. Method: The proposal is analyzed by means of a case study, including a real-life project, in order to obtain relevant conclusions. Results: The results achieved after using the framework in a development project are presented, including interesting results on project planning and estimation, as well as on team productivity throughout the project. Conclusion: It is concluded that the framework can be useful in order to better manage Web-based projects, through a continuous value-based estimation and management process.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-

    Scrum2Kanban: Integrating Kanban and Scrum in a University Software Engineering Capstone Course

    Full text link
    Using university capstone courses to teach agile software development methodologies has become commonplace, as agile methods have gained support in professional software development. This usually means students are introduced to and work with the currently most popular agile methodology: Scrum. However, as the agile methods employed in the industry change and are adapted to different contexts, university courses must follow suit. A prime example of this is the Kanban method, which has recently gathered attention in the industry. In this paper, we describe a capstone course design, which adds the hands-on learning of the lean principles advocated by Kanban into a capstone project run with Scrum. This both ensures that students are aware of recent process frameworks and ideas as well as gain a more thorough overview of how agile methods can be employed in practice. We describe the details of the course and analyze the participating students' perceptions as well as our observations. We analyze the development artifacts, created by students during the course in respect to the two different development methodologies. We further present a summary of the lessons learned as well as recommendations for future similar courses. The survey conducted at the end of the course revealed an overwhelmingly positive attitude of students towards the integration of Kanban into the course

    Automated user documentation generation based on the Eclipse application model

    Full text link
    An application's user documentation, also referred to as the user manual, is one of the core elements required in application distribution. While there exist many tools to aid an application's developer in creating and maintaining documentation on and for the code itself, there are no tools that complement code development with user documentation for modern graphical applications. Approaches like literate programming are not applicable to this scenario, as not a library, but a full application is to be documented to an end-user. Documentation generation on applications up to now was only partially feasible due to the gap between the code and its semantics. The new generation of Eclipse rich client platform developed applications is based on an application model, closing a broad semantic gap between code and visible interface. We use this application model to provide a semantic description for the contained elements. Combined with the internal relationships of the application model, these semantic descriptions are aggregated to well-structured user documentations that comply to the ISO/IEC 26514. This paper delivers a report on the Ecrit research project, where the potentials and limitations of user documentation generation based on the Eclipse application model were investigated.Comment: 9 pages, 9 figure
    corecore