395 research outputs found

    Active Sample Selection Based Incremental Algorithm for Attribute Reduction with Rough Sets

    Get PDF
    Attribute reduction with rough sets is an effective technique for obtaining a compact and informative attribute set from a given dataset. However, traditional algorithms have no explicit provision for handling dynamic datasets where data present themselves in successive samples. Incremental algorithms for attribute reduction with rough sets have been recently introduced to handle dynamic datasets with large samples, though they have high complexity in time and space. To address the time/space complexity issue of the algorithms, this paper presents a novel incremental algorithm for attribute reduction with rough sets based on the adoption of an active sample selection process and an insight into the attribute reduction process. This algorithm first decides whether each incoming sample is useful with respect to the current dataset by the active sample selection process. A useless sample is discarded while a useful sample is selected to update a reduct. At the arrival of a useful sample, the attribute reduction process is then employed to guide how to add and/or delete attributes in the current reduct. The two processes thus constitute the theoretical framework of our algorithm. The proposed algorithm is finally experimentally shown to be efficient in time and space

    Approximate Accuracy Approaches to Attribute Reduction for Information Systems

    Get PDF
    The key problem for attribute reduction to information systems is how to evaluate the importance of an attribute. The algorithms are challenged by the variety of data forms in information system. Based on rough sets theory we present a new approach to attribute reduction for incomplete information systems and fuzzy valued information systems. In order to evaluate the importance of an attribute effectively, a novel algorithm with rigorous theorem is proposed. Experiments show the effect of proposed algorithm

    Attribute Set Weighting and Decomposition Approaches for Reduct Computation

    Get PDF
    This research is mainly in the Rough Set theory based knowledge reduction for data classification within the data mining framework. To facilitate the Rough Set based classification, two main knowledge reduction models are proposed. The first model is an approximate approach for object reducts computation used particularly for the data classification purposes. This approach emphasizes on assigning weights for each attribute in the attributes set. The weights give indication for the importance of an attribute to be considered in the reduct. This proposed approach is named Object Reduct by Attribute Weighting (ORAW). A variation of this approach is proposed to compute full reduct and named Full Reduct by Attribute Weighting (FRAW).The second proposed approach deals with large datasets particularly with large number of attributes. This approach utilizes the principle of incremental attribute set decomposition to generate an approximate reduct to represent the entire dataset. This proposed approach is termed for Reduct by Attribute Set Decomposition (RASD).The proposed reduct computation approaches are extensively experimented and evaluated. The evaluation is mainly in two folds: first is to evaluate the proposed approaches as Rough Set based methods where the classification accuracy is used as an evaluation measure. The well known IO-fold cross validation method is used to estimate the classification accuracy. The second fold is to evaluate the approaches as knowledge reduction methods where the size of the reduct is used as a reduction measure. The approaches are compared to other reduct computation methods and to other none Rough Set based classification methods. The proposed approaches are applied to various standard domains datasets from the UCI repository. The results of the experiments showed a very good performance for the proposed approaches as classification methods and as knowledge reduction methods. The accuracy of the ORAW approach outperformed the Johnson approach over all the datasets. It also produces better accuracy over the Exhaustive and the Standard Integer Programming (SIP) approaches for the majority of the datasets used in the experiments. For the RASD approach, it is compared to other classification methods and it shows very competitive results in term of classification accuracy and reducts size. As a conclusion, the proposed approaches have shown competitive and even better accuracy in most tested domains. The experiment results indicate that the proposed approaches as Rough classifiers give good performance across different classification problems and they can be promising methods in solving classification problems. Moreover, the experiments proved that the incremental vertical decomposition framework is an appealing method for knowledge reduction over large datasets within the framework of Rough Set based classification
    corecore