714 research outputs found

    Schaefer's theorem for graphs

    Full text link
    Schaefer's theorem is a complexity classification result for so-called Boolean constraint satisfaction problems: it states that every Boolean constraint satisfaction problem is either contained in one out of six classes and can be solved in polynomial time, or is NP-complete. We present an analog of this dichotomy result for the propositional logic of graphs instead of Boolean logic. In this generalization of Schaefer's result, the input consists of a set W of variables and a conjunction \Phi\ of statements ("constraints") about these variables in the language of graphs, where each statement is taken from a fixed finite set \Psi\ of allowed quantifier-free first-order formulas; the question is whether \Phi\ is satisfiable in a graph. We prove that either \Psi\ is contained in one out of 17 classes of graph formulas and the corresponding problem can be solved in polynomial time, or the problem is NP-complete. This is achieved by a universal-algebraic approach, which in turn allows us to use structural Ramsey theory. To apply the universal-algebraic approach, we formulate the computational problems under consideration as constraint satisfaction problems (CSPs) whose templates are first-order definable in the countably infinite random graph. Our method to classify the computational complexity of those CSPs is based on a Ramsey-theoretic analysis of functions acting on the random graph, and we develop general tools suitable for such an analysis which are of independent mathematical interest.Comment: 54 page

    Constraint satisfaction problems for reducts of homogeneous graphs

    Get PDF
    For n >= 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain Hn whose relations are first-order definable in (Hn, E) the constraint satisfaction problem for Gamma is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete

    Constraint Satisfaction Problems for Reducts of Homogeneous Graphs

    Get PDF
    For n >= 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain Hn whose relations are first-order definable in (Hn, E) the constraint satisfaction problem for Gamma is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete

    Relational Width of First-Order Expansions of Homogeneous Graphs with Bounded Strict Width

    Get PDF
    Solving the algebraic dichotomy conjecture for constraint satisfaction problems over structures first-order definable in countably infinite finitely bounded homogeneous structures requires understanding the applicability of local-consistency methods in this setting. We study the amount of consistency (measured by relational width) needed to solve CSP(?) for first-order expansions ? of countably infinite homogeneous graphs ? := (A; E), which happen all to be finitely bounded. We study our problem for structures ? that additionally have bounded strict width, i.e., for which establishing local consistency of an instance of CSP(?) not only decides if there is a solution but also ensures that every solution may be obtained from a locally consistent instance by greedily assigning values to variables, without backtracking. Our main result is that the structures ? under consideration have relational width exactly (2, ?_?) where ?_? is the maximal size of a forbidden subgraph of ?, but not smaller than 3. It beats the upper bound: (2 m, 3 m) where m = max(arity(?)+1, ?, 3) and arity(?) is the largest arity of a relation in ?, which follows from a sufficient condition implying bounded relational width given in [Manuel Bodirsky and Antoine Mottet, 2018]. Since ?_? may be arbitrarily large, our result contrasts the collapse of the relational bounded width hierarchy for finite structures ?, whose relational width, if finite, is always at most (2,3)

    A complexity dichotomy for poset constraint satisfaction

    Get PDF
    In this paper we determine the complexity of a broad class of problems that extends the temporal constraint satisfaction problems. To be more precise we study the problems Poset-SAT(Φ\Phi), where Φ\Phi is a given set of quantifier-free ≤\leq-formulas. An instance of Poset-SAT(Φ\Phi) consists of finitely many variables x1,…,xnx_1,\ldots,x_n and formulas ϕi(xi1,…,xik)\phi_i(x_{i_1},\ldots,x_{i_k}) with ϕi∈Φ\phi_i \in \Phi; the question is whether this input is satisfied by any partial order on x1,…,xnx_1,\ldots,x_n or not. We show that every such problem is NP-complete or can be solved in polynomial time, depending on Φ\Phi. All Poset-SAT problems can be formalized as constraint satisfaction problems on reducts of the random partial order. We use model-theoretic concepts and techniques from universal algebra to study these reducts. In the course of this analysis we establish a dichotomy that we believe is of independent interest in universal algebra and model theory.Comment: 29 page
    • …
    corecore