508 research outputs found

    Modular multilevel converter with modified half-bridge submodule and arm filter for dc transmission systems with DC fault blocking capability

    Get PDF
    Although a modular multilevel converter (MMC) is universally accepted as a suitable converter topology for the high voltage dc transmission systems, its dc fault ride performance requires substantial improvement in order to be used in critical infrastructures such as transnational multi-terminal dc (MTDC) networks. Therefore, this paper proposes a modified submodule circuit for modular multilevel converter that offers an improved dc fault ride through performance with reduced semiconductor losses and enhanced control flexibility compared to that achievable with full-bridge submodules. The use of the proposed submodules allows MMC to retain its modularity; with semiconductor loss similar to that of the mixed submodules MMC, but higher than that of the half-bridge submodules. Besides dc fault blocking, the proposed submodule offers the possibility of controlling ac current in-feed during pole-to-pole dc short circuit fault, and this makes such submodule increasingly attractive and useful for continued operation of MTDC networks during dc faults. The aforesaid attributes are validated using simulations performed in MATLAB/SIMULINK, and substantiated experimentally using the proposed submodule topology on a 4-level small-scale MMC prototype

    Modeling and enhanced control of hybrid full bridge–half bridge MMCs for HVDC grid studies

    Get PDF
    Modular multilevel converters (MMCs) are expected to play an important role in future high voltage direct current (HVDC) grids. Moreover, advanced MMC topologies may include various submodule (SM) types. In this sense, the modeling of MMCs is paramount for HVDC grid studies. Detailed models of MMCs are cumbersome for electromagnetic transient (EMT) programs due to the high number of components and large simulation times. For this reason, simplified models that reduce the computation times while reproducing the dynamics of the MMCs are needed. However, up to now, the models already developed do not consider hybrid MMCs, which consist of different types of SMs. In this paper, a procedure to simulate MMCs having different SM topologies is proposed. First, the structure of hybrid MMCs and the modeling method is presented. Next, an enhanced procedure to compute the number of SMs to be inserted that takes into account the different behavior of full-bridge SMs (FB-SMs) and half-bridge submodules (HB-SMs) is proposed in order to improve the steady-state and dynamic response of hybrid MMCs. Finally, the MMC model and its control are validated by means of detailed PSCAD simulations for both steady-state and transients conditions (AC and DC faults)

    A New MMC Topology Which Decreases the Sub Module Voltage Fluctuations at Lower Switching Frequencies and Improves Converter Efficiency

    Get PDF
    Modular Multi-level inverters (MMCs) are becoming more common because of their suitability for applications in smart grids and multi-terminal HVDC transmission networks. The comparative study between the two classic topologies of MMC (AC side cascaded and DC side cascaded topologies) indicates some disadvantages which can affect their performance. The sub module voltage ripple and switching losses are one of the main issues and the reason for the appearance of the circulating current is sub module capacitor voltage ripple. Hence, the sub module capacitor needs to be large enough to constrain the voltage ripple when operating at lower switching frequencies. However, this is prohibitively uneconomical for the high voltage applications. There is always a trade off in MMC design between the switching frequency and sub module voltage ripple

    Controlled transition full-bridge hybrid multilevel converter with chain-links of full-bridge cells

    Get PDF
    This paper proposes a controlled transition full-bridge (CTFB) hybrid multilevel converter (HMC) for medium and high voltage applications. It employs a full-bridge cell chain-link (FB-CL) between the two legs in each phase to generate multilevel bipolar output voltage. The CTFB-HMC has twice dc voltage utilization or power density of conventional converters due to the bipolar capability of its full-bridge configuration. Hence, for the same power rating and same voltage level number, its total cells per phase are quarter that in modular multilevel converter (MMC), which reduces the hardware installation volume. Also, in the proposed converter, the total device number in the conduction paths is the same as in the half-bridge MMC, leading to low conduction losses. The FB-CL current of the CTFB converter has no dc component, which offers the potential to enhance the transient response. Comparative studies between the CTFB and other multilevel topologies are carried out to clarify its main features. The modulation strategies and parameter sizing of the proposed converter are investigated using a generic case. Simulation and experimental results are used to verify the effectiveness of the proposed approach

    Dual harmonic injection for reducing the sub-module capacitor voltage ripples of hybrid MMC

    Get PDF
    Reducing the capacitor voltage ripples of the half-bridge sub-modules (HBSM) and full-bridge sub-modules (FBSM) in a hybrid modular multilevel converter (MMC) is expected to reduce the capacitance, volume and costs. To address this issue, this paper proposes a dual harmonic injection method which injects the second harmonic circulating current and third order harmonic voltage into the conventional MMC control. Firstly, the mathematical model of the proposed control is established and analyzed. Then, the general strategy of determining the amplitude and phase angle of each injection component is proposed to suppress the fluctuations of the fundamental and double frequency instantaneous power. The proposed strategy can achieve the optimal power fluctuation suppression under various operating conditions, which also has the advantage of reducing the voltage fluctuation difference between HB and FB SMs. The correctness and effectiveness of the proposed strategy are verified in simulations in PSCAD/EMTDC

    Enhanced flat-topped modulation for MMC control in HVDC transmission systems

    Get PDF
    Flat-topped modulation is a member of the family of triplen-series injection techniques that have been extensively utilized in PWM inverter systems to increase the DC-link, and hence semiconductor, utilization. We propose the use of an optimized flat-topped modulation scheme for the modular multilevel converter (MMC) control. The optimized flat-topped waveform minimizes the magnitude of the triplen harmonics, particularly compared to the popular space-vector modulation (SVM) technique, while fully utilizing the DC voltage. This has particular advantages if the converter-side of the interfacing transformer is earthed. Under such conditions, the zero-sequence earthing current is affected by the triplen series injected into the sinusoidal modulating functions. Therefore, it is critical to minimize the injected triplen harmonics. The operating principle of the flat-topped scheme is presented and the Fourier coefficients are compared with the SVM technique. Additionally, the influence of the proposed control scheme on MMC performance is evaluated mathematically. Simulation of a point-to-point HVDC link using average model demonstrates the effectiveness of the proposed MMC operational schemes. The third harmonic of the flat-topped modulation is reduced by 33%, which lowers the potential zero-sequence current flowing to earth. Compared to conventional sinusoidal modulation, the submodule capacitance is reduced by 25%. This significantly lowers submodule cost, volume, and weight. Station conduction losses are expected to reduce by 11%, yielding higher efficiency and lowering cooling system capacity. In addition to the improvement under normal operation, the proposed control scheme also reduces the fault current by 13.4%

    Hybrid and modular multilevel converter designs for isolated HVDC–DC converters

    Get PDF
    Efficient medium and high-voltage dc-dc conversion is critical for future dc grids. This paper proposes a hybrid multilevel dc-ac converter structure that is used as the kernel of dc-dc conversion systems. Operation of the proposed dc-ac converter is suited to trapezoidal ac-voltage waveforms. Quantitative and qualitative analyses show that said trapezoidal operation reduces converter footprint, active and passive components' size, and on-state losses relative to conventional modular multilevel converters. The proposed converter is scalable to high voltages with controllable ac-voltage slope; implying tolerable dv/dt stresses on the converter transformer. Structural variations of the proposed converter with enhanced modularity and improved efficiency will be presented and discussed with regards to application in front-to-front isolated dc-dc conversion stages, and in light of said trapezoidal operation. Numerical results provide deeper insight of the presented converter designs with emphasis on system design aspects. Results obtained from a proof-of-concept 1-kW experimental test rig confirm the validity of simulation results, theoretical analyses, and simplified design equations presented in this paper. - 2013 IEEE.Scopu

    Modular Multilevel Converters for Medium Voltage Applications: Low Switching Frequency Modulation Strategies and Circulating Current Control Techniques.

    Get PDF
    233 p.El objetivo de la presente tesis ha sido el aumento de la eficiencia y la mejora del funcionamiento de convertidores multinivel modulares (MMCs) en aplicaciones de media tensión (drives, STATCOMs, redes de media tensión en DC o colectores de energía en parques eólicos). Para ello se ha propuesto la utilización de una modulación de baja frecuencia de conmutación como la Eliminación Selectiva de Armónicos (SHE-PWM). De esta forma se reducen las pérdidas de conmutación significativamente. Las contribuciones de la tesis son:- Nueva formulación para implementar SHE-PWM: Esta nueva formulación, a diferencia de las existentes, proporciona un sistema único de ecuaciones que es válido para cualquier forma de onda. De esta forma, es posible buscar los ángulos de disparo y los patrones de conmutación, que resuelven el problema de SHE-PWM, sin necesidad de predefinir ninguna forma de onda. Por lo tanto, la búsqueda de ángulos de disparo se simplifica significativamente y se puede encontrar un alto número de soluciones diferentes, pudiendo optimizar el diseño de la forma de onda. Además, esta formulación es válida con simetrías de cuarto de onda y de media onda.- Controles de la corriente circulante en MMCs cuando se utiliza SHE-PWM: estos controles, a diferencia de los existentes, no distorsionan la tensión de fase de salida cuando se utiliza SHE-PWM y permiten mantener equilibradas las tensiones de los condensadores de los sub-módulos del MMC, además de reducir rizado de la corriente circulante. En concreto, se han propuesto dos controles, uno con (N+1) SHE-PWM y otro con (2N+1) SHE-PWM

    A Review of Multilevel Converters With Parallel Connectivity

    Get PDF

    Modular Multilevel Converters for Medium Voltage Applications: Low Switching Frequency Modulation Strategies and Circulating Current Control Techniques.

    Get PDF
    233 p.El objetivo de la presente tesis ha sido el aumento de la eficiencia y la mejora del funcionamiento de convertidores multinivel modulares (MMCs) en aplicaciones de media tensión (drives, STATCOMs, redes de media tensión en DC o colectores de energía en parques eólicos). Para ello se ha propuesto la utilización de una modulación de baja frecuencia de conmutación como la Eliminación Selectiva de Armónicos (SHE-PWM). De esta forma se reducen las pérdidas de conmutación significativamente. Las contribuciones de la tesis son:- Nueva formulación para implementar SHE-PWM: Esta nueva formulación, a diferencia de las existentes, proporciona un sistema único de ecuaciones que es válido para cualquier forma de onda. De esta forma, es posible buscar los ángulos de disparo y los patrones de conmutación, que resuelven el problema de SHE-PWM, sin necesidad de predefinir ninguna forma de onda. Por lo tanto, la búsqueda de ángulos de disparo se simplifica significativamente y se puede encontrar un alto número de soluciones diferentes, pudiendo optimizar el diseño de la forma de onda. Además, esta formulación es válida con simetrías de cuarto de onda y de media onda.- Controles de la corriente circulante en MMCs cuando se utiliza SHE-PWM: estos controles, a diferencia de los existentes, no distorsionan la tensión de fase de salida cuando se utiliza SHE-PWM y permiten mantener equilibradas las tensiones de los condensadores de los sub-módulos del MMC, además de reducir rizado de la corriente circulante. En concreto, se han propuesto dos controles, uno con (N+1) SHE-PWM y otro con (2N+1) SHE-PWM
    corecore