3,368 research outputs found

    A Direct Coupling Coherent Quantum Observer for an Oscillatory Quantum Plant

    Get PDF
    A direct coupling coherent observer is constructed for a linear quantum plant which has oscillatory solutions. It is shown that a finite time moving average of the quantum observer output can provide an estimate of the quantum plant output without disturbing this plant signal. By choosing a sufficiently small averaging time and a sufficiently large observer gain, the observer tracking error can be made arbitrarily small.This work was supported by the Air Force Office of Scientific Research (AFOSR), under agreement number FA2386-16-1-4065. Some of the research presented in this paper was also supported by the Australian Research Council under grant FL110100020

    Real-time Information, Uncertainty and Quantum Feedback Control

    Full text link
    Feedback is the core concept in cybernetics and its effective use has made great success in but not limited to the fields of engineering, biology, and computer science. When feedback is used to quantum systems, two major types of feedback control protocols including coherent feedback control (CFC) and measurement-based feedback control (MFC) have been developed. In this paper, we compare the two types of quantum feedback control protocols by focusing on the real-time information used in the feedback loop and the capability in dealing with parameter uncertainty. An equivalent relationship is established between quantum CFC and non-selective quantum MFC in the form of operator-sum representation. Using several examples of quantum feedback control, we show that quantum MFC can theoretically achieve better performance than quantum CFC in stabilizing a quantum state and dealing with Hamiltonian parameter uncertainty. The results enrich understanding of the relative advantages between quantum MFC and quantum CFC, and can provide useful information in choosing suitable feedback protocols for quantum systems.Comment: 24 page

    Feedback-control of quantum systems using continuous state-estimation

    Full text link
    We present a formulation of feedback in quantum systems in which the best estimates of the dynamical variables are obtained continuously from the measurement record, and fed back to control the system. We apply this method to the problem of cooling and confining a single quantum degree of freedom, and compare it to current schemes in which the measurement signal is fed back directly in the manner usually considered in existing treatments of quantum feedback. Direct feedback may be combined with feedback by estimation, and the resulting combination, performed on a linear system, is closely analogous to classical LQG control theory with residual feedback.Comment: 12 pages, multicol revtex, revised and extende
    • …
    corecore