71 research outputs found

    Linear amplification with multiple nonlinear devices

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e ComputadoresIn mobile wireless systems, where there are strict power and bandwidth constrains it is desirable to adopt energy efficient constellations combined with powerful equalizer. However, this increased spectral efficiency of multilevel modulations comes at the expense of reduced power efficiency, which is undesirable in systems where power consumption is a constraint. Hence, minimization of the transmitted energy would enable a significant reduction in the total energy consumption of the wireless mobile devices. A simple and practical constellation optimization design would optimize the transmitted energy with a minimum increase in system complexity. The constellation decomposition in terms of a sum of BPSK (Bi-Phase Shift Keying) sub-constellations, relies on an analytical characterization of the mapping rule were the constellation symbols are written as a linear function of the transmitted bits. Moreover, large constellations in general and non-uniform constellations in particular are very sensitive to interference, namely the residual ISI (Inter-Symbol Interference) at the output of a practical equalizer that does not invert completely the channel effects. IB-DFE(Iterative Block DFE) is a promising iterative frequency domain equalization technique for SC-FDE schemes (Single-Carrier with Frequency Domain Equalization) that allows excellent performance. Therefore it is possible to use the decomposition of constellations on BPSK components to define a pragmatic method for designing IB-DFE receivers that can be employed with any constellation. In this thesis we consider SC-DFE schemes based on high orderM-ary energy optimized constellations with IB-DFE receivers. It is proposed a method for designing the receiver that does not require a significant increase in system complexity and can be used for the computation of the receiver parameters for any constellation. This method is then employed to design iterative receivers, implemented in the frequency-domain, which can cope with higher sensitivity to ISI effects of the constellations resulting from the energy optimization process.Fundação para a Ciência e Tecnologia - MPSat (PTDC/EEA-TEL/099074/2008) projec

    SC-FDE for Offset Modulations: An Efficient Transmission Technique for Broadband Wireless Systems

    Get PDF
    It is widely accepted that SC-FDE (Single-Carrier with Frequency-Domain Equalization) is an excellent candidate for broadband wireless systems, especially when an efficient power amplification is intended. If grossly nonlinear power amplifiers are employed, conventional QPSK (Quaternary Phase Shift Keying) or QAM (Quadrature Amplitude Modulation) modulations should be replaced by offset modulations such as OQPSK (Offset QPSK) and OQAM (Offset QAM). In fact, offset signals have much lower dynamic range than non-offset signals, with OQPSK signals being able to have an almost constant envelope. This paper considers frequency-domain receiver design for OQPSK and OQAM schemes. It is shown that FDE (Frequency Domain Equalization) designed for non-offset modulations are not suitable for offset modulations due to the residual IQI (In-phase/Quadrature Interference), i.e. the interference between in-phase (I) and quadrature (Q) components at the sampling instants. Therefore, we propose several FDE designs where there is no IQI in the sampling instants as well as iterative FDE receivers with IQI cancellation. Our receivers have excellent performance, with the linear designs significantly outperforming linear FDE for non-offset modulations and the iterative designs with performance close to the MFB (Matched Filter Bound)

    Dynamic link budget simulation

    Get PDF
    A new simulator named DLBS (Dynamic Link Budget Simulator) was written to simulate the time-varying communication link between a vehicle that re-enters the atmosphere from the outer space, and a ground station. During the vehicle descent trajectory, communications blackouts typically occur due to the effects of plasma that forms around the vehicle. A companion simulator, AIPT (Antenna In Plasma Tool), evaluates the electric field at the input of the ground station antenna, taking into consideration the vehicle structure, its antenna, the characteristics of plasma at some specified points along the vehicle trajectory, and the obtained values are stored in a file. DLBS processes the data read from the AIPT output file and evaluates the corresponding channel transfer functions. DLBS then allows to simulate the typical telemetry and telecommand links, using both CCSDS standardised and some non standard channel encoding schemes and modulations. For each generated frame, DLBS uses a channel transfer function obtained by adequately interpolating the two nearest transfer functions evaluated in the initial phase. DLBS includes realistic frame, frequency, phase and bit synchronisation, so that synchronisation errors are also included as source of performance degradation, and measures both the average bit and frame error rates, and the bit error rate at frame level, so that it is possible to appreciate the dynamic system behaviour. The paper will show the results obtained for a case stud

    Analysis of Candidate Waveforms for 5G Cellular Systems

    Get PDF
    Choice of a suitable waveform is a key factor in the design of 5G physical layer. New waveform/s must be capable of supporting a greater density of users, higher data throughput and should provide more efficient utilization of available spectrum to support 5G vision of “everything everywhere and always connected” with “perception of infinite capacity”. Although orthogonal frequency division multiplexing (OFDM) has been adopted as the transmission waveform in wired and wireless systems for years, it has several limitations that make it unsuitable for use in future 5G air interface. In this chapter, we investigate and analyse alternative waveforms that are promising candidate solutions to address the challenges of diverse applications and scenarios in 5G

    Implementação de códigos LDPC em OFDM e SC-FDE

    Get PDF
    Os desenvolvimentos dos sistemas de comunicação sem fios apontam para transmissões de alta velocidade e alta qualidade de serviço com um uso eficiente de energia. Eficiência espectral pode ser obtida por modulações multinível, enquanto que melhorias na eficiência de potência podem ser proporcionadas pelo uso de códigos corretores de erros. Os códigos Low-Density Parity-Check (LDPC), devido ao seu desempenho próximo do limite de Shannon e baixa complexidade na implementação e descodificação são apropriados para futuros sistemas de comunicações sem fios. Por outro lado, o uso de modulações multinível acarreta limitações na amplificação. Contudo, uma amplificação eficiente pode ser assegurada por estruturas de transmissão onde as modulações multinível são decompostas em submodulações com envolvente constante que podem ser amplificadas por amplificadores não lineares a operar na zona de saturação. Neste tipo de estruturas surgem desvios de fase e ganho, produzindo distorções na constelação resultante da soma de todos os sinais amplificados. O trabalho foca-se no uso dos códigos LDPC em esquemas multiportadora e monoportadora, com especial ênfase na performance de uma equalização iterativa implementada no domínio da frequência por um Iterative Block-Decision Feedback Equalizer (IB-DFE). São analisados aspectos como o impacto do número de iterações no processo de descodificação dentro das iterações do processo de equalização. Os códigos LDPC também serão utilizados para compensar os desvios de fase em recetores iterativos para sistemas baseados em transmissores com vários ramos de amplificação. É feito um estudo sobre o modo como estes códigos podem aumentar a tolerância a erros de fase que incluí uma análise da complexidade e um algoritmo para estimação dos desequilíbrios de fase

    Design of isotropic orthogonal transform algorithm-based multicarrier systems with blind channel estimation

    Full text link

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions
    corecore