167 research outputs found

    Analysis of the finite-source multiclass priority queue with an unreliable server and setup time

    Get PDF
    In this article, we study a queueing system serving multiple classes of customers. Each class has a finite-calling population. The customers are served according to the preemptive-resume priority policy. We assume general distributions for the service times. For each priority class, we derive the steady-state system size distributions at departure/arrival and arbitrary time epochs. We introduce the residual augmented process completion times conditioned on the number of customers in the system to obtain the system time distribution. We then extend the model by assuming that the server is subject to operation-independent failures upon which a repair process with random duration starts immediately. We also demonstrate how setup times, which may be required before resuming interrupted service or picking up a new customer, can be incorporated in the model

    Optimization problems on the performance of a nonreliable terminal system

    Get PDF
    AbstractThe aim of this paper is to investigate the effect of the different service disciplines, such as FIFO, PS, Priority Processor Sharing, Polling, on the main performance measures, such as utilizations, response times, throughput, mean queue length. It has been shown by numerical examples that even in the case of homogeneous sources and homogeneous failure and repair times, the CPU utilization depends on the scheduling discipline contrary to the case of reliable terminal systems. All random variables involved in the model construction are supposed to be exponentially distributed and independent of each other

    The impact of disruption characteristics on the performance of a server

    Get PDF
    In this paper, we study a queueing system serving N customers with an unreliable server subject to disruptions even when idle. Times between server interruptions, service times, and times between customer arrivals are assumed to follow exponential distributions. The main contribution of the paper is to use general distributions for the length of server interruption periods/down times. Our numerical analysis reveals the importance of incorporating the down time distribution into the model, since their impact on customer service levels could be counterintuitive. For instance, while higher down time variability increases the mean queue length, for other service levels, can prove to be improving system performance. We also show how the process completion time approach from the literature can be extended to analyze the queueing system if the unreliable server fails only when it is serving a customer

    Approximate Analysis of an Unreliable M/M/2 Retrial Queue

    Get PDF
    This thesis considers the performance evaluation of an M/M/2 retrial queue for which both servers are subject to active and idle breakdowns. Customers may abandon service requests if they are blocked from service upon arrival, or if their service is interrupted by a server failure. Customers choosing to remain in the system enter a retrial orbit for a random amount of time before attempting to re-access an available server. We assume that each server has its own dedicated repair person, and repairs begin immediately following a failure. Interfailure times, repair times and times between retrials are exponentially distributed, and all processes are assumed to be mutually independent. Modeling the number of customers in the orbit and status of the servers as a continuous-time Markov chain, we employ a phase-merging algorithm to approximately analyze the limiting behavior. Subsequently, we derive approximate expressions for several congestion and delay measures. Using a benchmark simulation model, we assess the accuracy of the approximations and show that, when the algorithm assumptions are met, the approximation procedure yields favorable results. However, as the rate of abandonment for blocked arrivals decreases, the performance declines while the results are insensitive to the rate of abandonment of customers preempted by a server failure

    A queueing model for a non-homogeneous terminal system subject to BR992

    Get PDF
    AbstractThis paper deals with a non-homogeneous queueing model to describe the performance of a multi-terminal system subject to random breakdowns. All random variables involved here are indepenent and exponentially distributed. Although the stochastic describing the system's behaviour is a Markov chain, the number of states becomes very large. The main contribution of this paper is a recursive computational approach (see(5)) to solve the steady-state equations concerning the problem. It further generalizes the homogeneous model treated in [1]. In equilibrium, the main performance characteristics of the system are obtained. Finally, some numerical results illustrate the problem in question

    Asymptotic waiting time analysis of finite source M/GI/1 retrial queueing systems with conflicts and unreliable server

    Get PDF
    The goal of the present paper is to analyze the steady-state distribution of the waiting time in a finite source M/G/1 retrial queueing system where conflicts may happen and the server is unreliable. An asymptotic method is used when the number of source N tends to infinity, the arrival intensity from the sources, the intensity of repeated calls tend to zero, while service intensity, breakdown intensity, recovery intensity are fixed. It is proved that the limiting steady-state probability distribution of the number of transitions/retrials of a customer into the orbit is geometric, and the waiting time of a customer is generalized exponentially distributed. The average total service time of a customer is also determined. Our new contribution to this topic is the inclusion of breakdown and recovery of the server. Prelimit distributions obtained by means of stochastic simulation are compared to the asymptotic ones and several numerical examples illustrate the power of the proposed asymptotic approach

    A survey of the machine interference problem

    Get PDF
    This paper surveys the research published on the machine interference problem since the 1985 review by Stecke & Aronson. After introducing the basic model, we discuss the literature along several dimensions. We then note how research has evolved since the 1985 review, including a trend towards the modelling of stochastic (rather than deterministic) systems and the corresponding use of more advanced queuing methods for analysis. We conclude with some suggestions for areas holding particular promise for future studies.Natural Sciences and Engineering Research Council (NSERC) Discovery Grant 238294-200

    Approximate analysis of queueing network models

    Get PDF
    corecore