2,406 research outputs found

    A generic framework for median graph computation based on a recursive embedding approach

    Get PDF
    The median graph has been shown to be a good choice to obtain a representative of a set of graphs. However, its computation is a complex problem. Recently, graph embedding into vector spaces has been proposed to obtain approximations of the median graph. The problem with such an approach is how to go from a point in the vector space back to a graph in the graph space. The main contribution of this paper is the generalization of this previous method, proposing a generic recursive procedure that permits to recover the graph corresponding to a point in the vector space, introducing only the amount of approximation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we compare it with the set median and with the other state-of-the-art embedding-based methods for the median graph computation. The experiments are carried out using four different databases (one semi-artificial and three containing real-world data). Results show that with the proposed approach we can obtain better medians, in terms of the sum of distances to the training graphs, than with the previous existing methods. © 2011 Elsevier Inc. All rights reserved.This work has been supported by the Spanish research programmes Consolider Ingenio 2010 CSD2007-00018, TIN2006-15694-C02-02 and TIN2008-04998 and the fellowship RYC-2009-05031.Peer Reviewe

    Tree Edit Distance Learning via Adaptive Symbol Embeddings

    Full text link
    Metric learning has the aim to improve classification accuracy by learning a distance measure which brings data points from the same class closer together and pushes data points from different classes further apart. Recent research has demonstrated that metric learning approaches can also be applied to trees, such as molecular structures, abstract syntax trees of computer programs, or syntax trees of natural language, by learning the cost function of an edit distance, i.e. the costs of replacing, deleting, or inserting nodes in a tree. However, learning such costs directly may yield an edit distance which violates metric axioms, is challenging to interpret, and may not generalize well. In this contribution, we propose a novel metric learning approach for trees which we call embedding edit distance learning (BEDL) and which learns an edit distance indirectly by embedding the tree nodes as vectors, such that the Euclidean distance between those vectors supports class discrimination. We learn such embeddings by reducing the distance to prototypical trees from the same class and increasing the distance to prototypical trees from different classes. In our experiments, we show that BEDL improves upon the state-of-the-art in metric learning for trees on six benchmark data sets, ranging from computer science over biomedical data to a natural-language processing data set containing over 300,000 nodes.Comment: Paper at the International Conference of Machine Learning (2018), 2018-07-10 to 2018-07-15 in Stockholm, Swede

    A comparison between two representatives of a set of graphs: median vs barycenter graph

    Get PDF
    Trabajo presentado al Joint IAPR International Workshop on Structural, Syntactic and Statistical Pattern Recognition (SSPR&SPR) celebrado en Esmirna (Turquía) del 18 al 20 de agosto de 2010.In this paper we consider two existing methods to generate a representative of a given set of graphs, that satisfy the following two conditions. On the one hand, that they are applicable to graphs with any kind of labels in nodes and edges and on the other hand, that they can handle relatively large amount of data. Namely, the approximated algorithms to compute the Median Graph via graph embedding and a new method to compute the Barycenter Graph. Our contribution is to give a new algorithm for the barycenter computation and to compare it to the median Graph. To compare these two representatives, we take into account algorithmic considerations and experimental results on the quality of the representative and its robustness, on several datasets.This work was supported by projects: 'CONSOLIDER-INGENIO 2010 Multimodal interaction in pattern recognition and computer vision' (V-00069), 'Robotica ubicua para entornos urbanos' (J-01225).Peer Reviewe
    corecore