13,917 research outputs found

    Weakly-Supervised Temporal Localization via Occurrence Count Learning

    Get PDF
    We propose a novel model for temporal detection and localization which allows the training of deep neural networks using only counts of event occurrences as training labels. This powerful weakly-supervised framework alleviates the burden of the imprecise and time-consuming process of annotating event locations in temporal data. Unlike existing methods, in which localization is explicitly achieved by design, our model learns localization implicitly as a byproduct of learning to count instances. This unique feature is a direct consequence of the model's theoretical properties. We validate the effectiveness of our approach in a number of experiments (drum hit and piano onset detection in audio, digit detection in images) and demonstrate performance comparable to that of fully-supervised state-of-the-art methods, despite much weaker training requirements.Comment: Accepted at ICML 201

    ARIGAN: Synthetic Arabidopsis Plants using Generative Adversarial Network

    Full text link
    In recent years, there has been an increasing interest in image-based plant phenotyping, applying state-of-the-art machine learning approaches to tackle challenging problems, such as leaf segmentation (a multi-instance problem) and counting. Most of these algorithms need labelled data to learn a model for the task at hand. Despite the recent release of a few plant phenotyping datasets, large annotated plant image datasets for the purpose of training deep learning algorithms are lacking. One common approach to alleviate the lack of training data is dataset augmentation. Herein, we propose an alternative solution to dataset augmentation for plant phenotyping, creating artificial images of plants using generative neural networks. We propose the Arabidopsis Rosette Image Generator (through) Adversarial Network: a deep convolutional network that is able to generate synthetic rosette-shaped plants, inspired by DCGAN (a recent adversarial network model using convolutional layers). Specifically, we trained the network using A1, A2, and A4 of the CVPPP 2017 LCC dataset, containing Arabidopsis Thaliana plants. We show that our model is able to generate realistic 128x128 colour images of plants. We train our network conditioning on leaf count, such that it is possible to generate plants with a given number of leaves suitable, among others, for training regression based models. We propose a new Ax dataset of artificial plants images, obtained by our ARIGAN. We evaluate this new dataset using a state-of-the-art leaf counting algorithm, showing that the testing error is reduced when Ax is used as part of the training data.Comment: 8 pages, 6 figures, 1 table, ICCV CVPPP Workshop 201

    Learning Visual Reasoning Without Strong Priors

    Full text link
    Achieving artificial visual reasoning - the ability to answer image-related questions which require a multi-step, high-level process - is an important step towards artificial general intelligence. This multi-modal task requires learning a question-dependent, structured reasoning process over images from language. Standard deep learning approaches tend to exploit biases in the data rather than learn this underlying structure, while leading methods learn to visually reason successfully but are hand-crafted for reasoning. We show that a general-purpose, Conditional Batch Normalization approach achieves state-of-the-art results on the CLEVR Visual Reasoning benchmark with a 2.4% error rate. We outperform the next best end-to-end method (4.5%) and even methods that use extra supervision (3.1%). We probe our model to shed light on how it reasons, showing it has learned a question-dependent, multi-step process. Previous work has operated under the assumption that visual reasoning calls for a specialized architecture, but we show that a general architecture with proper conditioning can learn to visually reason effectively.Comment: Full AAAI 2018 paper is at arXiv:1709.07871. Presented at ICML 2017's Machine Learning in Speech and Language Processing Workshop. Code is at http://github.com/ethanjperez/fil
    corecore