2,977 research outputs found

    VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing

    Full text link
    The hardware implementation of deep neural networks (DNNs) has recently received tremendous attention: many applications in fact require high-speed operations that suit a hardware implementation. However, numerous elements and complex interconnections are usually required, leading to a large area occupation and copious power consumption. Stochastic computing has shown promising results for low-power area-efficient hardware implementations, even though existing stochastic algorithms require long streams that cause long latencies. In this paper, we propose an integer form of stochastic computation and introduce some elementary circuits. We then propose an efficient implementation of a DNN based on integral stochastic computing. The proposed architecture has been implemented on a Virtex7 FPGA, resulting in 45% and 62% average reductions in area and latency compared to the best reported architecture in literature. We also synthesize the circuits in a 65 nm CMOS technology and we show that the proposed integral stochastic architecture results in up to 21% reduction in energy consumption compared to the binary radix implementation at the same misclassification rate. Due to fault-tolerant nature of stochastic architectures, we also consider a quasi-synchronous implementation which yields 33% reduction in energy consumption w.r.t. the binary radix implementation without any compromise on performance.Comment: 11 pages, 12 figure

    Weighted p-bits for FPGA implementation of probabilistic circuits

    Full text link
    Probabilistic spin logic (PSL) is a recently proposed computing paradigm based on unstable stochastic units called probabilistic bits (p-bits) that can be correlated to form probabilistic circuits (p-circuits). These p-circuits can be used to solve problems of optimization, inference and also to implement precise Boolean functions in an "inverted" mode, where a given Boolean circuit can operate in reverse to find the input combinations that are consistent with a given output. In this paper we present a scalable FPGA implementation of such invertible p-circuits. We implement a "weighted" p-bit that combines stochastic units with localized memory structures. We also present a generalized tile of weighted p-bits to which a large class of problems beyond invertible Boolean logic can be mapped, and how invertibility can be applied to interesting problems such as the NP-complete Subset Sum Problem by solving a small instance of this problem in hardware

    Stochastic Digital Circuits for Probabilistic Inference

    Get PDF
    We introduce combinational stochastic logic, an abstraction that generalizes deterministic digital circuit design (based on Boolean logic gates) to the probabilistic setting. We show how this logic can be combined with techniques from contemporary digital design to generate stateless and stateful circuits for exact and approximate sampling from a range of probability distributions. We focus on Markov chain Monte Carlo algorithms for Markov random fields, using massively parallel circuits. We implement these circuits on commodity reconfigurable logic and estimate the resulting performance in time, space and price. Using our approach, these simple and general algorithms could be affordably run for thousands of iterations on models with hundreds of thousands of variables in real time

    Reconfigurable Computing for Speech Recognition: Preliminary Findings

    Get PDF
    Continuous real-time speech recognition is a highly computationally-demanding task, but one which can take good advantage of a parallel processing system. To this end, we describe proposals for, and preliminary findings of, research in implementing in programmable logic the decoder part of a speech recognition system. Recognition via Viterbi decoding of Hidden Markov Models is outlined, along with details of current implementations, which aim to exploit properties of the algorithm that could make it well-suited for devices such as FPGAs. The question of how to deal with limited resources, by reconfiguration or otherwise, is also addressed
    • …
    corecore