805 research outputs found

    A general framework for intelligent recommender systems

    Get PDF
    AbstractIn this paper, we propose a general framework for an intelligent recommender system that extends the concept of a knowledge-based recommender system. The intelligent recommender system exploits knowledge, learns, discovers new information, infers preferences and criticisms, among other things. For that, the framework of an intelligent recommender system is defined by the following components: knowledge representation paradigm, learning methods, and reasoning mechanisms. Additionally, it has five knowledge models about the different aspects that we can consider during a recommendation: users, items, domain, context and criticisms. The mix of the components exploits the knowledge, updates it and infers, among other things. In this work, we implement one intelligent recommender system based on this framework, using Fuzzy Cognitive Maps (FCMs). Next, we test the performance of the intelligent recommender system with specialized criteria linked to the utilization of the knowledge in order to test the versatility and performance of the framework

    A Survey on Linked Data and the Social Web as facilitators for TEL recommender systems

    Get PDF
    Personalisation, adaptation and recommendation are central features of TEL environments. In this context, information retrieval techniques are applied as part of TEL recommender systems to filter and recommend learning resources or peer learners according to user preferences and requirements. However, the suitability and scope of possible recommendations is fundamentally dependent on the quality and quantity of available data, for instance, metadata about TEL resources as well as users. On the other hand, throughout the last years, the Linked Data (LD) movement has succeeded to provide a vast body of well-interlinked and publicly accessible Web data. This in particular includes Linked Data of explicit or implicit educational nature. The potential of LD to facilitate TEL recommender systems research and practice is discussed in this paper. In particular, an overview of most relevant LD sources and techniques is provided, together with a discussion of their potential for the TEL domain in general and TEL recommender systems in particular. Results from highly related European projects are presented and discussed together with an analysis of prevailing challenges and preliminary solutions.LinkedU

    Proceedings of the 3rd Workshop on Social Information Retrieval for Technology-Enhanced Learning

    Get PDF
    Learning and teaching resource are available on the Web - both in terms of digital learning content and people resources (e.g. other learners, experts, tutors). They can be used to facilitate teaching and learning tasks. The remaining challenge is to develop, deploy and evaluate Social information retrieval (SIR) methods, techniques and systems that provide learners and teachers with guidance in potentially overwhelming variety of choices. The aim of the SIRTEL’09 workshop is to look onward beyond recent achievements to discuss specific topics, emerging research issues, new trends and endeavors in SIR for TEL. The workshop will bring together researchers and practitioners to present, and more importantly, to discuss the current status of research in SIR and TEL and its implications for science and teaching

    The Knowledge Life Cycle for e-learning

    No full text
    In this paper, we examine the semantic aspects of e-learning from both pedagogical and technological points of view. We suggest that if semantics are to fulfil their potential in the learning domain then a paradigm shift in perspective is necessary, from information-based content delivery to knowledge-based collaborative learning services. We propose a semantics driven Knowledge Life Cycle that characterises the key phases in managing semantics and knowledge, show how this can be applied to the learning domain and demonstrate the value of semantics via an example of knowledge reuse in learning assessment management

    Generic adaptation framework for unifying adaptive web-based systems

    Get PDF
    The Generic Adaptation Framework (GAF) research project first and foremost creates a common formal framework for describing current and future adaptive hypermedia (AHS) and adaptive webbased systems in general. It provides a commonly agreed upon taxonomy and a reference model that encompasses the most general architectures of the present and future, including conventional AHS, and different types of personalization-enabling systems and applications such as recommender systems (RS) personalized web search, semantic web enabled applications used in personalized information delivery, adaptive e-Learning applications and many more. At the same time GAF is trying to bring together two (seemingly not intersecting) views on the adaptation: a classical pre-authored type, with conventional domain and overlay user models and data-driven adaptation which includes a set of data mining, machine learning and information retrieval tools. To bring these research fields together we conducted a number GAF compliance studies including RS, AHS, and other applications combining adaptation, recommendation and search. We also performed a number of real systems’ case-studies to prove the point and perform a detailed analysis and evaluation of the framework. Secondly it introduces a number of new ideas in the field of AH, such as the Generic Adaptation Process (GAP) which aligns with a layered (data-oriented) architecture and serves as a reference adaptation process. This also helps to understand the compliance features mentioned earlier. Besides that GAF deals with important and novel aspects of adaptation enabling and leveraging technologies such as provenance and versioning. The existence of such a reference basis should stimulate AHS research and enable researchers to demonstrate ideas for new adaptation methods much more quickly than if they had to start from scratch. GAF will thus help bootstrap any adaptive web-based system research, design, analysis and evaluation

    Semantically-enhanced recommendations in cultural heritage

    Get PDF
    In the Web 2.0 environment, institutes and organizations are starting to open up their previously isolated and heterogeneous collections in order to provide visitors with maximal access. Semantic Web technologies act as instrumental in integrating these rich collections of metadata by defining ontologies which accommodate different representation schemata and inconsistent naming conventions over the various vocabularies. Facing the large amount of metadata with complex semantic structures, it is becoming more and more important to support visitors with a proper selection and presentation of information. In this context, the Dutch Science Foundation (NWO) funded the Cultural Heritage Information Personalization (CHIP) project in early 2005, as part of the Continuous Access to Cultural Heritage (CATCH) program in the Netherlands. It is a collaborative project between the Rijksmuseum Amsterdam, the Eindhoven University of Technology and the Telematica Instituut. The problem statement that guides the research of this thesis is as follows: Can we support visitors with personalized access to semantically-enriched collections? To study this question, we chose cultural heritage (museums) as an application domain, and the semantically rich background knowledge about the museum collection provides a basis to our research. On top of it, we deployed user modeling and recommendation technologies in order to provide personalized services for museum visitors. Our main contributions are: (i) we developed an interactive rating dialog of artworks and art concepts for a quick instantiation of the CHIP user model, which is built as a specialization of FOAF and mapped to an existing event model ontology SEM; (ii) we proposed a hybrid recommendation algorithm, combining both explicit and implicit relations from the semantic structure of the collection. On the presentation level, we developed three tools for end-users: Art Recommender, Tour Wizard and Mobile Tour Guide. Following a user-centered design cycle, we performed a series of evaluations with museum visitors to test the effectiveness of recommendations using the rating dialog, different ways to build an optimal user model and the prediction accuracy of the hybrid algorithm. Chapter 1 introduces the research questions, our approaches and the outline of this thesis. Chapter 2 gives an overview of our work at the first stage. It includes (i) the semantic enrichment of the Rijksmuseum collection, which is mapped to three Getty vocabularies (ULAN, AAT, TGN) and the Iconclass thesaurus; (ii) the minimal user model ontology defined as a specialization of FOAF, which only stores user ratings at that time, (iii) the first implementation of the content-based recommendation algorithm in our first tool, the CHIP Art Recommender. Chapter 3 presents two other tools: Tour Wizard and Mobile Tour Guide. Based on the user's ratings, the Web-based Tour Wizard recommends museum tours consisting of recommended artworks that are currently available for museum exhibitions. The Mobile Tour Guide converts recommended tours to mobile devices (e.g. PDA) that can be used in the physical museum space. To connect users' various interactions with these tools, we made a conversion of the online user model stored in RDF into XML format which the mobile guide can parse, and in this way we keep the online and on-site user models dynamically synchronized. Chapter 4 presents the second generation of the Mobile Tour Guide with a real time routing system on different mobile devices (e.g. iPod). Compared with the first generation, it can adapt museum tours based on the user's ratings artworks and concepts, her/his current location in the physical museum and the coordinates of the artworks and rooms in the museum. In addition, we mapped the CHIP user model to an existing event model ontology SEM. Besides ratings, it can store additional user activities, such as following a tour and viewing artworks. Chapter 5 identifies a number of semantic relations within one vocabulary (e.g. a concept has a broader/narrower concept) and across multiple vocabularies (e.g. an artist is associated to an art style). We applied all these relations as well as the basic artwork features in content-based recommendations and compared all of them in terms of usefulness. This investigation also enables us to look at the combined use of artwork features and semantic relations in sequence and derive user navigation patterns. Chapter 6 defines the task of personalized recommendations and decomposes the task into a number of inference steps for ontology-based recommender systems, from a perspective of knowledge engineering. We proposed a hybrid approach combining both explicit and implicit recommendations. The explicit relations include artworks features and semantic relations with preliminary weights which are derived from the evaluation in Chapter 5. The implicit relations are built between art concepts based on instance-based ontology matching. Chapter 7 gives an example of reusing user interaction data generated by one application into another one for providing cross-application recommendations. In this example, user tagging about cultural events, gathered by iCITY, is used to enrich the user model for generating content-based recommendations in the CHIP Art Recommender. To realize full tagging interoperability, we investigated the problems that arise in mapping user tags to domain ontologies, and proposed additional mechanisms, such as the use of SKOS matching operators to deal with the possible mis-alignment of tags and domain-specific ontologies. We summarized to what extent the problem statement and each of the research questions are answered in Chapter 8. We also discussed a number of limitations in our research and looked ahead at what may follow as future work
    • 

    corecore