17,802 research outputs found

    Sequential Recommendation Based on Objective and Subjective Features

    Get PDF
    Nowadays, sequential recommender systems are widely used in E-commerce fields to capture consumers’ dynamic preferences in short terms. Existing transformer-based recommendation models mainly consider consumer preference for the products and some related features, such as price. However, besides such objective features, some subjective features, such as consumers’ preference for product quality, also affect consumers’ purchase decisions. In this paper, we design a Sequential Recommender system based on Objective and Subjective features (SROS). We construct subjective features by using natural language processing to analyze online consumer reviews. Then we design a feature-level multi-head self-attention to explore the interactions between objective features and subjective features and capture consumers’ dynamic preferences for them among different purchases. Experimental results on real-world datasets demonstrate the effectiveness of the proposed model

    Comparision of Utility-Based Recommendation Methods

    Get PDF
    In World Wide Web environments, recommender systems are useful to reduce information overloading. A content-based recommender system recommends items according to their features. Vector Space Model (VSM) is a popular way to recommend items that are similar to those the user liked in the past. The main disadvantages of this content-based method are overspecialization and new user problems that incurred by incomplete information on user preferences. Therefore, to construct users\u27 complete preference profiles may enhance the effectiveness of recommender systems. Some utility function elicitation methods have been developed based on Multi-Attribute Utility Theory. Whether these utility-based methods are able to outperform the traditional VSM method for recommendations is investigated in this research. This research adopts the RBFN and SMARTER methods to construct users\u27 multi-attribute utility functions that represent their complete preferences. A laboratory experiment is conducted to compare the utility-based methods with the traditional VSM method in terms of recommendation accuracy, time expense, and user perceptions. The research results demonstrate that the VSM method is suitable to recommend items with mostly nominal attributes, and the SMARTER method is suitable to recommend items with mostly numerical attributes. The RBFN method has reliable accuracy and time expense in both recommendation contexts

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Deep Causal Reasoning for Recommendations

    Full text link
    Traditional recommender systems aim to estimate a user's rating to an item based on observed ratings from the population. As with all observational studies, hidden confounders, which are factors that affect both item exposures and user ratings, lead to a systematic bias in the estimation. Consequently, a new trend in recommender system research is to negate the influence of confounders from a causal perspective. Observing that confounders in recommendations are usually shared among items and are therefore multi-cause confounders, we model the recommendation as a multi-cause multi-outcome (MCMO) inference problem. Specifically, to remedy confounding bias, we estimate user-specific latent variables that render the item exposures independent Bernoulli trials. The generative distribution is parameterized by a DNN with factorized logistic likelihood and the intractable posteriors are estimated by variational inference. Controlling these factors as substitute confounders, under mild assumptions, can eliminate the bias incurred by multi-cause confounders. Furthermore, we show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space. Fortunately, we theoretically demonstrate that introducing user features as pre-treatment variables can substantially improve sample efficiency and alleviate overfitting. Empirical studies on simulated and real-world datasets show that the proposed deep causal recommender shows more robustness to unobserved confounders than state-of-the-art causal recommenders. Codes and datasets are released at https://github.com/yaochenzhu/deep-deconf

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance
    corecore