876 research outputs found

    Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management?

    Get PDF
    With the advent of big data, data center applications are processing vast amounts of unstructured and semi-structured data, in parallel on large clusters, across hundreds to thousands of nodes. The highest performance for these batch big data workloads is achieved using expensive network equipment with large buffers, which accommodate bursts in network traffic and allocate bandwidth fairly even when the network is congested. Throughput-sensitive big data applications are, however, often executed in the same data center as latency-sensitive workloads. For both workloads to be supported well, the network must provide both maximum throughput and low latency. Progress has been made in this direction, as modern network switches support Active Queue Management (AQM) and Explicit Congestion Notifications (ECN), both mechanisms to control the level of queue occupancy, reducing the total network latency. This paper is the first study of the effect of Active Queue Management on both throughput and latency, in the context of Hadoop and the MapReduce programming model. We give a quantitative comparison of four different approaches for controlling buffer occupancy and latency: RED and CoDel, both standalone and also combined with ECN and DCTCP network protocol, and identify the AQM configurations that maintain Hadoop execution time gains from larger buffers within 5%, while reducing network packet latency caused by bufferbloat by up to 85%. Finally, we provide recommendations to administrators of Hadoop clusters as to how to improve latency without degrading the throughput of batch big data workloads.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    ALOJA-ML: a framework for automating characterization and knowledge discovery in Hadoop deployments

    Get PDF
    This article presents ALOJA-Machine Learning (ALOJA-ML) an extension to the ALOJA project that uses machine learning techniques to interpret Hadoop benchmark performance data and performance tuning; here we detail the approach, efficacy of the model and initial results. The ALOJA-ML project is the latest phase of a long-term collaboration between BSC and Microsoft, to automate the characterization of cost-effectiveness on Big Data deployments, focusing on Hadoop. Hadoop presents a complex execution environment, where costs and performance depends on a large number of software (SW) configurations and on multiple hardware (HW) deployment choices. Recently the ALOJA project presented an open, vendor-neutral repository, featuring over 16.000 Hadoop executions. These results are accompanied by a test bed and tools to deploy and evaluate the cost-effectiveness of the different hardware configurations, parameter tunings, and Cloud services. Despite early success within ALOJA from expert-guided benchmarking, it became clear that a genuinely comprehensive study requires automation of modeling procedures to allow a systematic analysis of large and resource-constrained search spaces. ALOJA-ML provides such an automated system allowing knowledge discovery by modeling Hadoop executions from observed benchmarks across a broad set of configuration parameters. The resulting empirically-derived performance models can be used to forecast execution behavior of various workloads; they allow a-priori prediction of the execution times for new configurations and HW choices and they offer a route to model-based anomaly detection. In addition, these models can guide the benchmarking exploration efficiently, by automatically prioritizing candidate future benchmark tests. Insights from ALOJA-ML's models can be used to reduce the operational time on clusters, speed-up the data acquisition and knowledge discovery process, and importantly, reduce running costs. In addition to learning from the methodology presented in this work, the community can benefit in general from ALOJA data-sets, framework, and derived insights to improve the design and deployment of Big Data applications.This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 re- search and innovation programme (grant agreement No 639595). This work is partially supported by the Ministry of Economy of Spain under contracts TIN2012-34557 and 2014SGR105Peer ReviewedPostprint (published version

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Measuring and Managing Answer Quality for Online Data-Intensive Services

    Full text link
    Online data-intensive services parallelize query execution across distributed software components. Interactive response time is a priority, so online query executions return answers without waiting for slow running components to finish. However, data from these slow components could lead to better answers. We propose Ubora, an approach to measure the effect of slow running components on the quality of answers. Ubora randomly samples online queries and executes them twice. The first execution elides data from slow components and provides fast online answers; the second execution waits for all components to complete. Ubora uses memoization to speed up mature executions by replaying network messages exchanged between components. Our systems-level implementation works for a wide range of platforms, including Hadoop/Yarn, Apache Lucene, the EasyRec Recommendation Engine, and the OpenEphyra question answering system. Ubora computes answer quality much faster than competing approaches that do not use memoization. With Ubora, we show that answer quality can and should be used to guide online admission control. Our adaptive controller processed 37% more queries than a competing controller guided by the rate of timeouts.Comment: Technical Repor
    • …
    corecore