2,266 research outputs found

    Icing Effects on Power Lines and Anti-icing and De-icing Methods

    Get PDF
    Icing on power lines may lead to compromise safety and reliability of electric supply network. Prolong icing can lead to power breakdown and collapse of towers. Since power transmission lines are mostly overhead and could face the direct impact of icing, and it is one of the main challenges faced by power distribution companies in cold regions. When the ice accretion crosses the safety limit then deicing action can be carried out. We can find number of deicing methods that are used in different parts of the world. However, all of these deicing techniques have their own advantages and disadvantages on implementation. It is one of the most difficult as well as dangerous process to perform deicing on power lines. If a fault is detected and that has been occurred due to icing or during routine maintenance, extra care must be taken in order to ensure safety of the personals when performing de-icing of lines. However, as technology evolved, new ways and techniques are adopted with the help of sensors that give quick feedback to control room in the national grid via wireless communication network for real time action. In the thesis we have discussed atmospheric icing impacts on power lines in the cold regions across the world. A literature review has been done for anti-icing and deicing methods that are currently adopted in the power distribution network. Methods that are used against ice buildups have also been analyzed. This work also shows the impacts of icing and deicing techniques presently adopted, and also throws light on their pros and cons during maintenance operations. It provides an overview of the evolving technology trends that are practiced to ensure the availability of existing power transmission system in cold climate regions

    Subtransmission overhead lines mechanical monitoring for fast detection of damaging events

    Get PDF
    Different harmful events affecting high voltage overhead lines (OHLs) cause changes in the mechanical tension (tensile strength) of conductors. A mechanical monitoring of OHLs, therefore, can provide useful additional information (compared with the information provided by the widely used SCADA systems) about the power system state. The tension measurements combined with a few environmental measurements (air temperature, wind speed) can be used for an automatic (fast) detection of different events and for their approximate location along an OHL, reducing the impact of these events. Referring to 132-150 kV sub-transmission OHLs, this paper proposes some original algorithms, based on the mechanical monitoring of OHLs, for the automatic detection of the following events: conductor breaking, fall of trees on the conductors, ice/snow sleeve accretion on the conductors, strands breaking and galloping. The proposed algorithms require a limited number of sensors placed along the OHLs for measurements of the conductor tension and weather-related quantities

    Aerial Image Analysis using Deep Learning for Electrical Overhead Line Network Asset Management

    Get PDF
    Electricity networks are critical infrastructure, delivering vital energy services. Due to the significant number, variety and distribution of electrical network overhead line assets, energy network operators spend millions annually on inspection and maintenance programmes. Currently, inspection involves acquiring and manually analysing aerial images. This is labour intensive and subjective. Along with costs associated with helicopter or drone operations, data analysis represents a significant financial burden to network operators. We propose an approach to automating assessment of the condition of electrical towers. Importantly, we train machine learning tower classifiers without using condition labels for individual components of interest. Instead, learning is supervised using only condition labels for towers in their entirety. This enables us to use a real-world industry dataset without needing costly additional human labelling of thousands of individual components. Our prototype first detects instances of components in multiple images of each tower, using Mask R-CNN or RetinaNet. It then predicts tower condition ratings using one of two approaches: (i) component instance classifiers trained using class labels transferred from towers to each of their detected component instances, or (ii) multiple instance learning classifiers based on bags of detected instances. Instance or bag class predictions are aggregated to obtain tower condition ratings. Evaluation used a dataset with representative tower images and associated condition ratings covering a range of component types, scenes, environmental conditions, and viewpoints. We report experiments investigating classification of towers based on the condition of their multiple insulator and U-bolt components. Insulators and their U-bolts were detected with average precision of 96.7 and 97.9, respectively. Tower classification achieved areas under ROC curves of 0.94 and 0.98 for insulator condition and U-bolt condition ratings, respectively. Thus we demonstrate that tower condition classifiers can be trained effectively without labelling the condition of individual components

    Power Transmission Lines: Worldwide Research Trends

    Get PDF
    The importance of the quality and continuity of electricity supply is increasingly evident given the dependence of the world economy on its daily and instantaneous operation. In turn, the network is made up of power transmission lines. This study has been carried out based on the Scopus database, where all the publications, over 5000 documents, related to the topic of the power transmission lines have been analyzed up to the year 2022. This manuscript aims to highlight the main global research trends in power transmission lines and to detect which are the emerging areas. This manuscript cover three main aspects: First, the main scientific categories of these publications and their temporal trends. Second, the countries and affiliations that contribute to the research and their main research topics. Third, identification of the main trends in the field using the detection of scientific communities by means of the clustering method. The three main scientific categories found were Engineering, Energy and Computer Science. This research is most strongly developed in China, as the top 10 institutions are from this country, followed by USA and in third place by Russia. Twelve lines of research have been detected: Line Inspection, Leakage Current, Magnetic Fields, Fault Location, Icing, Lines Design, Natural Disasters, Temperature, Half-wave, Arc Flash, Pattern Recognition, and Artificial Intelligence. This research will open new perspectives for future research on power transmission lines

    Autonomous detection of high-voltage towers employing unmanned aerial vehicles

    Get PDF
    Monitoring and controlling the power grid is extremely important to prevent power outages and blackouts. Traditionally, the most common methods for inspecting high-voltage towers and power lines include visual inspections by qualified personnel, inspections by helicopters, and, in some cases, the use of specialized robots, among others. These inspections aim to detect anomalies near the infrastructure, anomalies due to hotspots in the insulation or visual defects in the various structural elements. One of the main problems of these techniques is the high economic cost and the lack of accuracy. As an alternative, unmanned aerial vehicles (UAVs) are becoming more popular in the market, and the trend is gradually moving towards this technology, as it offers significant cost reduction, better mobility and flexibility, and great potential for obtaining high-quality images. This thesis (TFG) studies the feasibility of developing a system capable of autonomously detecting high-voltage towers using an unmanned aerial vehicle and conducting power line inspections. This system consists of a desktop application that allows the user to program legs of a flight plan, and a drone that executes them and detects the high-voltage towers using an artificial intelligence model. The system developed in this study is part of a contribution to the Drone Engineering Ecosystem (DEE), a platform for controlling and monitoring unmanned aerial vehicles using desktop and/or web applications. The main goal of this platform is the improvement and continuity of its development by future students.Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructur

    Assessment of Unmanned Aerial Systems and lidar for the Utility Vegetation Management of Electrical Distribution Rights-of-Ways

    Get PDF
    Utility Vegetation Management (UVM) is often the largest maintenance expense for many utilities. However, with advances in Unmanned Aerial Systems (UAS; or more commonly, “drones”) and lidar technologies, vegetation managers may be able to more rapidly and accurately identify vegetation threats to critical infrastructures. The goal of this study was to assess the utility of Geodetics’ UAS-lidar system for vegetation threat assessment for 1.6 km of a distribution electric circuit. We investigated factors which contribute to accurate tree crown detection and segmentation of trees from within an UAS-lidar derived point cloud, and the factors which contribute to accurate tree risk assessment. The study adapted the International Society of Arboriculture’s (ISA) tree risk assessment methodology to the application of remotely sensed tree inventory. We utilized the lidar detected and segmented tree crowns for tree risk analysis based upon each tree’s height, elevation, and location in relation to the electrical infrastructure. The individual tree detection and segmentation results show that our canopy type parameter and the routine used for field- and lidar-derived tree matching to have the largest effect on the classification agreement of field and lidar derived datasets. The Threat Detection classification also demonstrated a significant effect due to our canopy modeling parameter, where single canopy models possessed higher average Kappa agreement statistic and divided canopy models detected a larger number of threats on average. Ultimately, our best model was capable of the correct detection, segmentation, matching, and classification of half of the field trees which were determined to be vegetation threats

    3D Reconstruction of Building Rooftop and Power Line Models in Right-of-Ways Using Airborne LiDAR Data

    Get PDF
    The research objectives aimed to achieve thorough the thesis are to develop methods for reconstructing models of building and PL objects of interest in the power line (PL) corridor area from airborne LiDAR data. For this, it is mainly concerned with the model selection problem for which model is more optimal in representing the given data set. This means that the parametric relations and geometry of object shapes are unknowns and optimally determined by the verification of hypothetical models. Therefore, the proposed method achieves high adaptability to the complex geometric forms of building and PL objects. For the building modeling, the method of implicit geometric regularization is proposed to rectify noisy building outline vectors which are due to noisy data. A cost function for the regularization process is designed based on Minimum Description Length (MDL) theory, which favours smaller deviation between a model and observation as well as orthogonal and parallel properties between polylines. Next, a new approach, called Piecewise Model Growing (PMG), is proposed for 3D PL model reconstruction using a catenary curve model. It piece-wisely grows to capture all PL points of interest and thus produces a full PL 3D model. However, the proposed method is limited to the PL scene complexity, which causes PL modeling errors such as partial, under- and over-modeling errors. To correct the incompletion of PL models, the inner and across span analysis are carried out, which leads to replace erroneous PL segments by precise PL models. The inner span analysis is performed based on the MDL theory to correct under- and over-modeling errors. The across span analysis is subsequently carried out to correct partial-modeling errors by finding start and end positions of PLs which denotes Point Of Attachment (POA). As a result, this thesis addresses not only geometrically describing building and PL objects but also dealing with noisy data which causes the incompletion of models. In the practical aspects, the results of building and PL modeling should be essential to effectively analyze a PL scene and quickly alleviate the potentially hazardous scenarios jeopardizing the PL system

    Technical Institute, Kevin Street : Prospectus, 1940- 41

    Get PDF

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots
    corecore