110,027 research outputs found

    A recent-biased dimension reduction technique for time series data

    Full text link
    There are many techniques developed for tackling time series and most of them consider every part of a sequence equally. In many applications, however, recent data can often be much more interesting and significant than old data. This paper defines new recent-biased measures for distance and energy, and proposes a recent-biased technique based on DWT for time series in which more recent data are considered more significant. With such a recent-biased technique, the dimension of time series can be reduced while effectively preserving the recent-biased energy. Our experiments have demonstrated the effectiveness of the proposed approach for handling time series. © Springer-Verlag Berlin Heidelberg 2005

    Serial correlation in dynamic panel data models with weakly exogenous regressor and fixed effects

    Get PDF
    Our paper wants to present and compare two estimation methodologies for dynamic panel data models in the presence of serially correlated errors and weakly exogenous regressors. The ¯rst is the ¯rst di®erence GMM estimator as proposed by Arellano and Bond (1991) and the second is the transformed Maximum Likelihood Estimator as proposed by Hsiao, Pesaran, and Tahmiscioglu (2002). Thereby, we consider the ¯xed e®ects case and weakly exogenous regressors. The ¯nite sample properties of both estimation methodologies are analysed within a simulation experiment. Furthermore, we will present an empirical example to consider the performance of both estimators with real data. JEL Classification: C23, J6

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads

    The Augmented Synthetic Control Method

    Full text link
    The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The "synthetic control" is a weighted average of control units that balances the treated unit's pre-treatment outcomes as closely as possible. A critical feature of the original proposal is to use SCM only when the fit on pre-treatment outcomes is excellent. We propose Augmented SCM as an extension of SCM to settings where such pre-treatment fit is infeasible. Analogous to bias correction for inexact matching, Augmented SCM uses an outcome model to estimate the bias due to imperfect pre-treatment fit and then de-biases the original SCM estimate. Our main proposal, which uses ridge regression as the outcome model, directly controls pre-treatment fit while minimizing extrapolation from the convex hull. This estimator can also be expressed as a solution to a modified synthetic controls problem that allows negative weights on some donor units. We bound the estimation error of this approach under different data generating processes, including a linear factor model, and show how regularization helps to avoid over-fitting to noise. We demonstrate gains from Augmented SCM with extensive simulation studies and apply this framework to estimate the impact of the 2012 Kansas tax cuts on economic growth. We implement the proposed method in the new augsynth R package
    corecore