1,230 research outputs found

    Scalable reliable on-demand media streaming protocols

    Get PDF
    This thesis considers the problem of delivering streaming media, on-demand, to potentially large numbers of concurrent clients. The problem has motivated the development in prior work of scalable protocols based on multicast or broadcast. However, previous protocols do not allow clients to efficiently: 1) recover from packet loss; 2) share bandwidth fairly with competing flows; or 3) maximize the playback quality at the client for any given client reception rate characteristics. In this work, new protocols, namely Reliable Periodic Broadcast (RPB) and Reliable Bandwidth Skimming (RBS), are developed that efficiently recover from packet loss and achieve close to the best possible server bandwidth scalability for a given set of client characteristics. To share bandwidth fairly with competing traffic such as TCP, these protocols can employ the Vegas Multicast Rate Control (VMRC) protocol proposed in this work. The VMRC protocol exhibits TCP Vegas-like behavior. In comparison to prior rate control protocols, VMRC provides less oscillatory reception rates to clients, and operates without inducing packet loss when the bottleneck link is lightly loaded. The VMRC protocol incorporates a new technique for dynamically adjusting the TCP Vegas threshold parameters based on measured characteristics of the network. This technique implements fair sharing of network resources with other types of competing flows, including widely deployed versions of TCP such as TCP Reno. This fair sharing is not possible with the previously defined static Vegas threshold parameters. The RPB protocol is extended to efficiently support quality adaptation. The Optimized Heterogeneous Periodic Broadcast (HPB) is designed to support a range of client reception rates and efficiently support static quality adaptation by allowing clients to work-ahead before beginning playback to receive a media file of the desired quality. A dynamic quality adaptation technique is developed and evaluated which allows clients to achieve more uniform playback quality given time-varying client reception rates

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Advances in Vehicular Ad-hoc Networks (VANETs): challenges and road-map for future development

    Get PDF
    Recent advances in wireless communication technologies and auto-mobile industry have triggered a significant research interest in the field of vehicular ad-hoc networks (VANETs) over the past few years. A vehicular network consists of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications supported by wireless access technologies such as IEEE 802.11p. This innovation in wireless communication has been envisaged to improve road safety and motor traffic efficiency in near future through the development of intelligent transportation system (ITS). Hence, governments, auto-mobile industries and academia are heavily partnering through several ongoing research projects to establish standards for VANETs. The typical set of VANET application areas, such as vehicle collision warning and traffic information dissemination have made VANET an interesting field of mobile wireless communication. This paper provides an overview on current research state, challenges, potentials of VANETs as well as the ways forward to achieving the long awaited ITS

    Network parameters impact on dynamic transmission power control in vehicular ad hoc networks

    Get PDF
    International audienceIn vehicular ad hoc networks, the dynamic change in transmission power is very effective to increase the throughput of the wireless vehicular network and decrease the delay of the message communication between vehicular nodes on the highway. Whenever an event occurs on the highway, the reliability of the communication in the vehicular network becomes so vital so that event created messages should reach to all the moving network nodes. It becomes necessary that there should be no interference from outside of the network and all the neighbor nodes should lie in the transmission range of the reference vehicular node. Transmission range is directly proportional to the transmission power the moving node. If the transmission power will be high, the interference increases that can cause higher delay in message reception at receiver end, hence the performance of the network decreased. In this paper, it is analyzed that how transmission power can be controlled by considering other different parameter of the network such as; density, distance between moving nodes, different types of messages dissemination with their priority, selection of an antenna also affects the transmission power. The dynamic control of transmission power in VANET serves also for the optimization of the resources where it needs, can be decreased and increased depending on the circumstances of the network. Different applications and events of different types also cause changes in transmission power to enhance the reachability. The analysis in this paper is comprised of density, distance with single hop and multi hop message broadcasting based dynamic transmission power control as well as antenna selection and applications based. Some summarized tables are produced according to the respective parameters of the vehicular network. At the end some valuable observations are made and discussed in detail

    무선랜 비디오 멀티캐스트의 문제 발견 및 성능 향상 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 최성현.Video multicast, streaming real-time videos via multicast, over wireless local area network (WLAN) has been considered a promising solution to share common venue-specific videos. By virtue of the nature of the wireless broadcast medium, video multicast basically enables scale-free video delivery, i.e., it can deliver a common video with the fixed amount of wireless resource regardless of the number of receivers. However, video multicast has not been widely enjoyed in our lives due to three major challenges: (1) power saving-related problem, (2) low reliability and efficiency, and (3) limited coverage. In this dissertation, we consider three research topics, i.e., (1) identification of practical issues with multicast power saving, (2) physical (PHY) rate and forward erasure correction code (FEC) rate adaptation over a single-hop network, and (3) multi-hop multicast, which deal with the three major challenges, respectively. Firstly, video multicast needs to be reliably delivered to power-saving stations, given that many portable devices are battery-powered. Accordingly, we investigate the impact of multicast power saving, and address two practical issues related with the multicast power saving. From the measurement with several commercial WLAN devices, we observe that many devices are not standard compliant, thus making video multicast performance severely degraded. We categorize such standard incompliant malfunctions that can result in significant packet losses. We also figure out a coexistence problem between video multicast and voice over Internet protocol (VoIP) when video receivers runs in power saving mode (PSM). The standard-compliant power save delivery of multicast deteriorates the VoIP performance in the same WLAN. We analyze the VoIP packet losses due to the coexistence problem, and propose a new power save delivery scheme to resolve the problem. We further implement the proposed scheme with an open source device driver, and our measurement results demonstrate that the proposed scheme significantly enhances the VoIP performance without sacrificing the video multicast performance. Second, multi-PHY rate FEC-applied wireless multicast enables reliable and efficient video multicast with intelligent selection of PHY rate and FEC rate. The optimal PHY/FEC rates depend on the cause of the packet losses. However, previous approaches select the PHY/FEC rates by considering only channel errors even when interference is also a major source of packet losses.We propose InFRA, an interference-aware PHY/FEC rate adaptation framework that (1) infers the cause of the packet losses based on received signal strength indicator (RSSI) and cyclic redundancy check (CRC) error notifications, and (2) determines the PHY/FEC rates based on the cause of packet losses. Our prototype implementation with off-the-shelf chipsets demonstrates that InFRA enhances the multicast delivery under various network scenarios. InFRA enables 2.3x and 1.8x more nodes to achieve a target video packet loss rate with a contention interferer and a hidden interferer, respectively, compared with the state-of-theart PHY/FEC rate adaptation scheme. To the best of our knowledge, InFRA is the first work to take the impact of interference into account for the PHY/FEC rate adaptation. Finally, collaborative relaying that enables selected receiver nodes to relay the received packets from source node to other nodes enhances service coverage, reliability, and efficiency of video multicast. The intelligent selection of sender nodes (source and relays) and their transmission parameters (PHY rate and the number of packets to send) is the key to optimize the performance. We propose EV-CAST, an interference and energy-aware video multicast system using collaborative relays, which entails online network management based on interference-aware link characterization, an algorithm for joint determination of sender nodes and transmission parameters, and polling-based relay protocol. In order to select most appropriate set of the relay nodes, EV-CAST considers interference, battery status, and spatial reuse, as well as other factors accumulated over last decades. Our prototype-based measurement results demonstrate that EV-CAST outperforms the state-of-the-art video multicast schemes. In summary, from Chapter 2 to Chapter 4, the aforementioned three pieces of the research work, i.e., identification of power saving-related practical issues, InFRA for interference-resilient single-hop multicast, and EV-CAST for efficient multi-hop multicast, will be presented, respectively.1 Introduction 1 1.1 Video Multicast over WLAN 1 1.2 Overview of Existing Approaches 4 1.2.1 Multicast Power Saving 4 1.2.2 Reliability and Efficiency Enhancement 4 1.2.3 Coverage Extension 5 1.3 Main Contributions 7 1.3.1 Practical Issues with Multicast Power Saving 7 1.3.2 Interference-aware PHY/FEC Rate Adaptation 8 1.3.3 Energy-aware Multi-hop Multicast 9 1.4 Organization of the Dissertation 10 2 Practical Issues with Multicast Power Saving 12 2.1 Introduction 12 2.2 Multicast & Power Management Operation in IEEE 802.11 14 2.3 Inter-operability Issue 15 2.3.1 Malfunctions of Commercial WLAN Devices 17 2.3.2 Performance Evaluation 20 2.4 Coexistence Problem of Video Multicast and VoIP 21 2.4.1 Problem Statement 21 2.4.2 Problem Identification: A Measurement Study 23 2.4.3 Packet Loss Analysis 27 2.4.4 Proposed Scheme 32 2.4.5 Performance Evaluation 33 2.5 Summary 37 3 InFRA: Interference-Aware PHY/FEC Rate Adaptation for Video Multicast over WLAN 39 3.1 Introduction 39 3.2 Related Work 42 3.2.1 Reliable Multicast Protocol 42 3.2.2 PHY/FEC rate adaptation for multicast service 44 3.2.3 Wireless Video Transmission 45 3.2.4 Wireless Loss Differentiation 46 3.3 Impact of Interference on Multi-rate FEC-applied Multicast 46 3.3.1 Measurement Setup 47 3.3.2 Measurement Results 47 3.4 InFRA: Interference-aware PHY/FEC Rate Adaptation Framework 49 3.4.1 Network Model and Objective 49 3.4.2 Overall Architecture 50 3.4.3 FEC Scheme 52 3.4.4 STA-side Operation 53 3.4.5 AP-side Operation 61 3.4.6 Practical Issues 62 3.5 Performance Evaluation 65 3.5.1 Measurement Setup 66 3.5.2 Small Scale Evaluation 67 3.5.3 Large Scale Evaluation 70 3.6 Summary 74 4 EV-CAST: Interference and Energy-aware Video Multicast Exploiting Collaborative Relays 75 4.1 Introduction 75 4.2 Factors for Sender Node and Transmission Parameter Selection 78 4.3 EV-CAST: Interference and Energy-aware Multicast Exploiting Collaborative Relays 80 4.3.1 Network Model and Objective 80 4.3.2 Overview 81 4.3.3 Network Management 81 4.3.4 Interference and Energy-aware Sender Nodes and Transmission Parameter Selection (INFER) Algorithm 87 4.3.5 Assignment, Polling, and Re-selection of Relays 93 4.3.6 Discussion 95 4.4 Evaluation 96 4.4.1 Measurement Setup 96 4.4.2 Micro-benchmark 98 4.4.3 Macro-benchmark 103 4.5 Related Work 105 4.5.1 Multicast Opportunistic Routing 105 4.5.2 Multicast over WLAN 106 4.6 Summary 106 5 Conclusion 108 5.1 Research Contributions 108 5.2 Future Research Directions 109 Abstract (In Korean) 121Docto

    Video delivery technologies for large-scale deployment of multimedia applications

    Full text link

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    Cross-layer signalling and middleware: a survey for inelastic soft real-time applications in MANETs

    Get PDF
    This paper provides a review of the different cross-layer design and protocol tuning approaches that may be used to meet a growing need to support inelastic soft real-time streams in MANETs. These streams are characterised by critical timing and throughput requirements and low packet loss tolerance levels. Many cross-layer approaches exist either for provision of QoS to soft real-time streams in static wireless networks or to improve the performance of real and non-real-time transmissions in MANETs. The common ground and lessons learned from these approaches, with a view to the potential provision of much needed support to real-time applications in MANETs, is therefore discussed

    A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    Get PDF
    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption

    Quality-oriented adaptation scheme for multimedia streaming in local broadband multi-service IP networks

    Get PDF
    The research reported in this thesis proposes, designs and tests the Quality-Oriented Adaptation Scheme (QOAS), an application-level adaptive scheme that offers high quality multimedia services to home residences and business premises via local broadband IP-networks in the presence of other traffic of different types. QOAS uses a novel client-located grading scheme that maps some network-related parameters’ values, variations and variation patterns (e.g. delay, jitter, loss rate) to application-level scores that describe the quality of delivery. This grading scheme also involves an objective metric that estimates the end-user perceived quality, increasing its effectiveness. A server-located arbiter takes content and rate adaptation decisions based on these quality scores, which is the only information sent via feedback by the clients. QOAS has been modelled, implemented and tested through simulations and an instantiation of it has been realized in a prototype system. The performance was assessed in terms of estimated end-user perceived quality, network utilisation, loss rate and number of customers served by a fixed infrastructure. The influence of variations in the parameters used by QOAS and of the networkrelated characteristics was studied. The scheme’s adaptive reaction was tested with background traffic of different type, size and variation patterns and in the presence of concurrent multimedia streaming processes subject to user-interactions. The results show that the performance of QOAS was very close to that of an ideal adaptive scheme. In comparison with other adaptive schemes QOAS allows for a significant increase in the number of simultaneous users while maintaining a good end-user perceived quality. These results are verified by a set of subjective tests that have been performed on viewers using a prototype system
    corecore