1,075 research outputs found

    Modeling and Analyzing Millimeter Wave Cellular Systems

    Full text link
    We provide a comprehensive overview of mathematical models and analytical techniques for millimeter wave (mmWave) cellular systems. The two fundamental physical differences from conventional Sub-6GHz cellular systems are (i) vulnerability to blocking, and (ii) the need for significant directionality at the transmitter and/or receiver, which is achieved through the use of large antenna arrays of small individual elements. We overview and compare models for both of these factors, and present a baseline analytical approach based on stochastic geometry that allows the computation of the statistical distributions of the downlink signal-to-interference-plus-noise ratio (SINR) and also the per link data rate, which depends on the SINR as well as the average load. There are many implications of the models and analysis: (a) mmWave systems are significantly more noise-limited than at Sub-6GHz for most parameter configurations; (b) initial access is much more difficult in mmWave; (c) self-backhauling is more viable than in Sub-6GHz systems which makes ultra-dense deployments more viable, but this leads to increasingly interference-limited behavior; and (d) in sharp contrast to Sub-6GHz systems cellular operators can mutually benefit by sharing their spectrum licenses despite the uncontrolled interference that results from doing so. We conclude by outlining several important extensions of the baseline model, many of which are promising avenues for future research.Comment: 50 pages, 10 figures, submitted to IEEE Trans. Communications, invited pape

    5G Cellular User Equipment: From Theory to Practical Hardware Design

    Full text link
    Research and development on the next generation wireless systems, namely 5G, has experienced explosive growth in recent years. In the physical layer (PHY), the massive multiple-input-multiple-output (MIMO) technique and the use of high GHz frequency bands are two promising trends for adoption. Millimeter-wave (mmWave) bands such as 28 GHz, 38 GHz, 64 GHz, and 71 GHz, which were previously considered not suitable for commercial cellular networks, will play an important role in 5G. Currently, most 5G research deals with the algorithms and implementations of modulation and coding schemes, new spatial signal processing technologies, new spectrum opportunities, channel modeling, 5G proof of concept (PoC) systems, and other system-level enabling technologies. In this paper, we first investigate the contemporary wireless user equipment (UE) hardware design, and unveil the critical 5G UE hardware design constraints on circuits and systems. On top of the said investigation and design trade-off analysis, a new, highly reconfigurable system architecture for 5G cellular user equipment, namely distributed phased arrays based MIMO (DPA-MIMO) is proposed. Finally, the link budget calculation and data throughput numerical results are presented for the evaluation of the proposed architecture.Comment: Submitted to IEEE ACCESS. It has 18 pages, 17 figures, and 5 table

    Millimeter Wave MIMO with Lens Antenna Array: A New Path Division Multiplexing Paradigm

    Full text link
    Millimeter wave (mmWave) communication is a promising technology for 5G cellular systems. To compensate for the severe path loss in mmWave systems, large antenna arrays are generally used to achieve significant beamforming gains. However, due to the high hardware and power consumption cost associated with radio frequency (RF) chains, it is desirable to achieve the large-antenna gains, but with only limited number of RF chains for mmWave communications. To this end, we study in this paper a new lens antenna array enabled mmWave MIMO communication system. We first show that the array response of the proposed lens antenna array at the receiver/transmitter follows a "sinc" function, where the antenna with the peak response is determined by the angle of arrival (AoA)/departure (AoD) of the received/transmitted signal. By exploiting this unique property of lens antenna arrays along with the multi-path sparsity of mmWave channels, we propose a novel low-cost and capacity-achieving MIMO transmission scheme, termed \emph{orthogonal path division multiplexing (OPDM)}. For channels with insufficiently separated AoAs and/or AoDs, we also propose a simple \emph{path grouping} technique with group-based small-scale MIMO processing to mitigate the inter-path interference. Numerical results are provided to compare the performance of the proposed lens antenna arrays for mmWave MIMO system against that of conventional arrays, under different practical setups. It is shown that the proposed system achieves significant throughput gain as well as complexity and hardware cost reduction, both making it an appealing new paradigm for mmWave MIMO communications.Comment: submitted for possible journal publicatio

    Millimeter Wave Cellular Wireless Networks: Potentials and Challenges

    Full text link
    Millimeter wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multi-element antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low power micro- or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures and carrier aggregation can be leveraged in the mmW context.Comment: 17 pages, 15 figures. arXiv admin note: text overlap with arXiv:1312.492

    A Survey of Millimeter Wave (mmWave) Communications for 5G: Opportunities and Challenges

    Full text link
    With the explosive growth of mobile data demand, the fifth generation (5G) mobile network would exploit the enormous amount of spectrum in the millimeter wave (mmWave) bands to greatly increase communication capacity. There are fundamental differences between mmWave communications and existing other communication systems, in terms of high propagation loss, directivity, and sensitivity to blockage. These characteristics of mmWave communications pose several challenges to fully exploit the potential of mmWave communications, including integrated circuits and system design, interference management, spatial reuse, anti-blockage, and dynamics control. To address these challenges, we carry out a survey of existing solutions and standards, and propose design guidelines in architectures and protocols for mmWave communications. We also discuss the potential applications of mmWave communications in the 5G network, including the small cell access, the cellular access, and the wireless backhaul. Finally, we discuss relevant open research issues including the new physical layer technology, software-defined network architecture, measurements of network state information, efficient control mechanisms, and heterogeneous networking, which should be further investigated to facilitate the deployment of mmWave communication systems in the future 5G networks.Comment: 17 pages, 8 figures, 7 tables, Journal pape

    Joint Spatial Division and Multiplexing for mm-Wave Channels

    Full text link
    Massive MIMO systems are well-suited for mm-Wave communications, as large arrays can be built with reasonable form factors, and the high array gains enable reasonable coverage even for outdoor communications. One of the main obstacles for using such systems in frequency-division duplex mode, namely the high overhead for the feedback of channel state information (CSI) to the transmitter, can be mitigated by the recently proposed JSDM (Joint Spatial Division and Multiplexing) algorithm. In this paper we analyze the performance of this algorithm in some realistic propagation channels that take into account the partial overlap of the angular spectra from different users, as well as the sparsity of mm-Wave channels. We formulate the problem of user grouping for two different objectives, namely maximizing spatial multiplexing, and maximizing total received power, in a graph-theoretic framework. As the resulting problems are numerically difficult, we proposed (sub optimum) greedy algorithms as efficient solution methods. Numerical examples show that the different algorithms may be superior in different settings.We furthermore develop a new, "degenerate" version of JSDM that only requires average CSI at the transmitter, and thus greatly reduces the computational burden. Evaluations in propagation channels obtained from ray tracing results, as well as in measured outdoor channels show that this low-complexity version performs surprisingly well in mm-Wave channels.Comment: Accepted for publication in "JSAC Special Issue in 5G Communication Systems

    An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems

    Full text link
    Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.Comment: Submitted to IEEE Journal of Selected Topics in Signal Processin

    Comparative Analysis of Initial Access Techniques in 5G mmWave Cellular Networks

    Full text link
    The millimeter wave frequencies (roughly above 10 GHz) offer the availability of massive bandwidth to greatly increase the capacity of fifth generation (5G) cellular wireless systems. However, to overcome the high isotropic pathloss at these frequencies, highly directional transmissions will be required at both the base station (BS) and the mobile user equipment (UE) to establish sufficient link budget in wide area networks. This reliance on directionality has important implications for control layer procedures. Initial access in particular can be significantly delayed due to the need for the BS and the UE to find the initial directions of transmission. This paper provides a survey of several recently proposed techniques. Detection probability and delay analysis is performed to compare various techniques including exhaustive and iterative search. We show that the optimal strategy depends on the target SNR regime.Comment: Accepted at 50th Annual Conference on Information Sciences and Systems (CISS), 201

    Near-Optimal Hybrid Analog and Digital Precoding for Downlink mmWave Massive MIMO Systems

    Full text link
    Millimeter wave (mmWave) massive MIMO can achieve orders of magnitude increase in spectral and energy efficiency, and it usually exploits the hybrid analog and digital precoding to overcome the serious signal attenuation induced by mmWave frequencies. However, most of hybrid precoding schemes focus on the full-array structure, which involves a high complexity. In this paper, we propose a near-optimal iterative hybrid precoding scheme based on the more realistic subarray structure with low complexity. We first decompose the complicated capacity optimization problem into a series of ones easier to be handled by considering each antenna array one by one. Then we optimize the achievable capacity of each antenna array from the first one to the last one by utilizing the idea of successive interference cancelation (SIC), which is realized in an iterative procedure that is easy to be parallelized. It is shown that the proposed hybrid precoding scheme can achieve better performance than other recently proposed hybrid precoding schemes, while it also enjoys an acceptable computational complexity

    Eliminating Interference in LOS Massive Multi-User MIMO with a Few Transceivers

    Full text link
    Wireless cellular communication networks are bandwidth and interference limited. An important means to overcome these resource limitations is the use of multiple antennas. Base stations equipped with a very large (massive) number of antennas have been the focus of recent research. A bottleneck in such systems is the limited number of transmit/receive chains. In this work, a line-of-sight (LOS) channel model is considered. It is shown that for a given number of interferers, it suffices that the number of transmit/receive chains exceeds the number of desired users by one, assuming a sufficiently large antenna array. From a theoretical point of view, this is the first result proving the near-optimal performance of antenna selection, even when the total number of signals (desired and interfering) is larger than the number of receive chains. Specifically, a single additional chain suffices to reduce the interference to any desired level. We prove that using the proposed selection, a simple linear receiver/transmitter for the uplink/downlink provides near-optimal rates. In particular, in the downlink direction, there is no need for complicated dirty paper coding; each user can use an optimal code for a single user interference-free channel. In the uplink direction, there is almost no gain in implementing joint decoding. The proposed approach is also a significant improvement both from system and computational perspectives. Simulation results demonstrating the performance of the proposed method are provided
    corecore