32,716 research outputs found

    A Non-Rigid Map Fusion-Based RGB-Depth SLAM Method for Endoscopic Capsule Robots

    Full text link
    In the gastrointestinal (GI) tract endoscopy field, ingestible wireless capsule endoscopy is considered as a minimally invasive novel diagnostic technology to inspect the entire GI tract and to diagnose various diseases and pathologies. Since the development of this technology, medical device companies and many groups have made significant progress to turn such passive capsule endoscopes into robotic active capsule endoscopes to achieve almost all functions of current active flexible endoscopes. However, the use of robotic capsule endoscopy still has some challenges. One such challenge is the precise localization of such active devices in 3D world, which is essential for a precise three-dimensional (3D) mapping of the inner organ. A reliable 3D map of the explored inner organ could assist the doctors to make more intuitive and correct diagnosis. In this paper, we propose to our knowledge for the first time in literature a visual simultaneous localization and mapping (SLAM) method specifically developed for endoscopic capsule robots. The proposed RGB-Depth SLAM method is capable of capturing comprehensive dense globally consistent surfel-based maps of the inner organs explored by an endoscopic capsule robot in real time. This is achieved by using dense frame-to-model camera tracking and windowed surfelbased fusion coupled with frequent model refinement through non-rigid surface deformations

    A 3D discrete model of the diaphragm and human trunk

    Full text link
    In this paper, a 3D discrete model is presented to model the movements of the trunk during breathing. In this model, objects are represented by physical particles on their contours. A simple notion of force generated by a linear actuator allows the model to create forces on each particle by way of a geometrical attractor. Tissue elasticity and contractility are modeled by local shape memory and muscular fibers attractors. A specific dynamic MRI study was used to build a simple trunk model comprised of by three compartments: lungs, diaphragm and abdomen. This model was registered on the real geometry. Simulation results were compared qualitatively as well as quantitatively to the experimental data, in terms of volume and geometry. A good correlation was obtained between the model and the real data. Thanks to this model, pathology such as hemidiaphragm paralysis can also be simulated.Comment: published in: "Lung Modelling", France (2006

    Virtual Reality applied to biomedical engineering

    Get PDF
    Actualment, la realitat virtual esta sent tendència i s'està expandint a l'àmbit mèdic, fent possible l'aparició de nombroses aplicacions dissenyades per entrenar metges i tractar pacients de forma més eficient, així com optimitzar els processos de planificació quirúrgica. La necessitat mèdica i objectiu d'aquest projecte és fer òptim el procés de planificació quirúrgica per a cardiopaties congènites, que compren la reconstrucció en 3D del cor del pacient i la seva integració en una aplicació de realitat virtual. Seguint aquesta línia s’ha combinat un procés de modelat 3D d’imatges de cors obtinguts gracies al Hospital Sant Joan de Déu i el disseny de l’aplicació mitjançant el software Unity 3D gracies a l’empresa VISYON. S'han aconseguit millores en quant al software emprat per a la segmentació i reconstrucció, i s’han assolit funcionalitats bàsiques a l’aplicació com importar, moure, rotar i fer captures de pantalla en 3D de l'òrgan cardíac i així, entendre millor la cardiopatia que s’ha de tractar. El resultat ha estat la creació d'un procés òptim, en el que la reconstrucció en 3D ha aconseguit ser ràpida i precisa, el mètode d’importació a l’app dissenyada molt senzill, i una aplicació que permet una interacció atractiva i intuïtiva, gracies a una experiència immersiva i realista per ajustar-se als requeriments d'eficiència i precisió exigits en el camp mèdic

    Virtual reality training and assessment in laparoscopic rectum surgery

    Get PDF
    Background: Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. Methods: To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. Results: With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. Conclusions: This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. © 2014 John Wiley & Sons, Ltd

    Numerically simulated exposure of children and adults to pulsed gradient fields in MRI

    Get PDF
    PurposeTo determine exposure to gradient switching fields of adults and children in a magnetic resonance imaging (MRI) scanner by evaluating internal electric fields within realistic models of adult male, adult female, and child inside transverse and longitudinal gradient coils, and to compare these results with compliance guidelines. Materials and MethodsPatients inside x-, y-, and z-gradient coils were simulated using anatomically realistic models of adult male, adult female, and child. The induced electric fields were computed for 1 kHz sinusoidal current with a magnitude of 1 A in the gradient coils. Rheobase electric fields were then calculated and compared to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2004 and International Electrotechnical Commission (IEC) 2010 guidelines. The effect of the human body, coil type, and skin conductivity on the induced electric field was also investigated. ResultsThe internal electric fields are within the first level controlled operating mode of the guidelines and range from 2.7V m(-1) to 4.5V m(-1), except for the adult male inside the y-gradient coil (induced field reaches 5.4V m(-1)).The induced electric field is sensitive to the coil type (electric field in the skin of adult male: 4V m(-1), 4.6V m(-1), and 3.8V m(-1) for x-, y-, and z-gradient coils, respectively), the human body model (electric field in the skin inside y-gradient coil: 4.6V m(-1), 4.2V m(-1), and 3V m(-1) for adult male, adult female, and child, respectively), and the skin conductivity (electric field 2.35-4.29% higher for 0.1S m(-1) skin conductivity compared to 0.2S m(-1)). ConclusionThe y-gradient coil induced the largest fields in the patients. The highest levels of internal electric fields occurred for the adult male model. J. Magn. Reson. Imaging 2016;44:1360-1367

    Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study

    Get PDF
    Quantitative, non-invasive and local measurements of arterial mechanical properties could be highly beneficial for early diagnosis of cardiovascular disease and follow up of treatment. Arterial shear wave elastography (SWE) and wave velocity dispersion analysis have previously been applied to measure arterial stiffness. Arterial wall thickness (h) and inner diameter (D) vary with age and pathology and may influence the shear wave propagation. Nevertheless, the effect of arterial geometry in SWE has not yet been systematically investigated. In this study the influence of geometry on the estimated mechanical properties of plates (h = 0.5–3 mm) and hollow cylinders (h = 1, 2 and 3 mm, D = 6 mm) was assessed by experiments in phantoms and by finite element method simulations. In addition, simulations in hollow cylinders with wall thickness difficult to achieve in phantoms were performed (h = 0.5–1.3 mm, D = 5–8 mm). The phase velocity curves obtained from experiments and simulations were compared in the frequency range 200–1000 Hz and showed good agreement (R2 = 0.80 ± 0.07 for plates and R2 = 0.82 ± 0.04 for hollow cylinders). Wall thickness had a larger effect than diameter on the dispersion curves, which did not have major effects above 400 Hz. An underestimation of 0.1–0.2 mm in wall thickness introduces an error 4–9 kPa in hollow cylinders with shear modulus of 21–26 kPa. Therefore, wall thickness should correctly be measured in arterial SWE applications for accurate mechanical properties estimation
    • …
    corecore