25,336 research outputs found

    Stochastic Sampling Simulation for Pedestrian Trajectory Prediction

    Full text link
    Urban environments pose a significant challenge for autonomous vehicles (AVs) as they must safely navigate while in close proximity to many pedestrians. It is crucial for the AV to correctly understand and predict the future trajectories of pedestrians to avoid collision and plan a safe path. Deep neural networks (DNNs) have shown promising results in accurately predicting pedestrian trajectories, relying on large amounts of annotated real-world data to learn pedestrian behavior. However, collecting and annotating these large real-world pedestrian datasets is costly in both time and labor. This paper describes a novel method using a stochastic sampling-based simulation to train DNNs for pedestrian trajectory prediction with social interaction. Our novel simulation method can generate vast amounts of automatically-annotated, realistic, and naturalistic synthetic pedestrian trajectories based on small amounts of real annotation. We then use such synthetic trajectories to train an off-the-shelf state-of-the-art deep learning approach Social GAN (Generative Adversarial Network) to perform pedestrian trajectory prediction. Our proposed architecture, trained only using synthetic trajectories, achieves better prediction results compared to those trained on human-annotated real-world data using the same network. Our work demonstrates the effectiveness and potential of using simulation as a substitution for human annotation efforts to train high-performing prediction algorithms such as the DNNs.Comment: 8 pages, 6 figures and 2 table

    Stochastic Sampling Simulation for Pedestrian Trajectory Prediction

    Get PDF
    Urban environments pose a significant challenge for autonomous vehicles (AVs) as they must safely navigate while in close proximity to many pedestrians. It is crucial for the AV to correctly understand and predict the future trajectories of pedestrians to avoid collision and plan a safe path. Deep neural networks (DNNs) have shown promising results in accurately predicting pedestrian trajectories, relying on large amounts of annotated real-world data to learn pedestrian behavior. However, collecting and annotating these large real-world pedestrian datasets is costly in both time and labor. This paper describes a novel method using a stochastic sampling-based simulation to train DNNs for pedestrian trajectory prediction with social interaction. Our novel simulation method can generate vast amounts of automatically-annotated, realistic, and naturalistic synthetic pedestrian trajectories based on small amounts of real annotation. We then use such synthetic trajectories to train an off-the-shelf state-of-the-art deep learning approach Social GAN (Generative Adversarial Network) to perform pedestrian trajectory prediction. Our proposed architecture, trained only using synthetic trajectories, achieves better prediction results compared to those trained on human-annotated real-world data using the same network. Our work demonstrates the effectiveness and potential of using simulation as a substitution for human annotation efforts to train high-performing prediction algorithms such as the DNNs.Comment: 8 pages, 6 figures and 2 table

    Imitating Driver Behavior with Generative Adversarial Networks

    Full text link
    The ability to accurately predict and simulate human driving behavior is critical for the development of intelligent transportation systems. Traditional modeling methods have employed simple parametric models and behavioral cloning. This paper adopts a method for overcoming the problem of cascading errors inherent in prior approaches, resulting in realistic behavior that is robust to trajectory perturbations. We extend Generative Adversarial Imitation Learning to the training of recurrent policies, and we demonstrate that our model outperforms rule-based controllers and maximum likelihood models in realistic highway simulations. Our model both reproduces emergent behavior of human drivers, such as lane change rate, while maintaining realistic control over long time horizons.Comment: 8 pages, 6 figure

    Practical Attacks Against Graph-based Clustering

    Full text link
    Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.Comment: ACM CCS 201

    Physical Primitive Decomposition

    Full text link
    Objects are made of parts, each with distinct geometry, physics, functionality, and affordances. Developing such a distributed, physical, interpretable representation of objects will facilitate intelligent agents to better explore and interact with the world. In this paper, we study physical primitive decomposition---understanding an object through its components, each with physical and geometric attributes. As annotated data for object parts and physics are rare, we propose a novel formulation that learns physical primitives by explaining both an object's appearance and its behaviors in physical events. Our model performs well on block towers and tools in both synthetic and real scenarios; we also demonstrate that visual and physical observations often provide complementary signals. We further present ablation and behavioral studies to better understand our model and contrast it with human performance.Comment: ECCV 2018. Project page: http://ppd.csail.mit.edu

    Lifelong Generative Modeling

    Full text link
    Lifelong learning is the problem of learning multiple consecutive tasks in a sequential manner, where knowledge gained from previous tasks is retained and used to aid future learning over the lifetime of the learner. It is essential towards the development of intelligent machines that can adapt to their surroundings. In this work we focus on a lifelong learning approach to unsupervised generative modeling, where we continuously incorporate newly observed distributions into a learned model. We do so through a student-teacher Variational Autoencoder architecture which allows us to learn and preserve all the distributions seen so far, without the need to retain the past data nor the past models. Through the introduction of a novel cross-model regularizer, inspired by a Bayesian update rule, the student model leverages the information learned by the teacher, which acts as a probabilistic knowledge store. The regularizer reduces the effect of catastrophic interference that appears when we learn over sequences of distributions. We validate our model's performance on sequential variants of MNIST, FashionMNIST, PermutedMNIST, SVHN and Celeb-A and demonstrate that our model mitigates the effects of catastrophic interference faced by neural networks in sequential learning scenarios.Comment: 32 page
    corecore