206 research outputs found

    FPGA based technical solutions for high throughput data processing and encryption for 5G communication: A review

    Get PDF
    The field programmable gate array (FPGA) devices are ideal solutions for high-speed processing applications, given their flexibility, parallel processing capability, and power efficiency. In this review paper, at first, an overview of the key applications of FPGA-based platforms in 5G networks/systems is presented, exploiting the improved performances offered by such devices. FPGA-based implementations of cloud radio access network (C-RAN) accelerators, network function virtualization (NFV)-based network slicers, cognitive radio systems, and multiple input multiple output (MIMO) channel characterizers are the main considered applications that can benefit from the high processing rate, power efficiency and flexibility of FPGAs. Furthermore, the implementations of encryption/decryption algorithms by employing the Xilinx Zynq Ultrascale+MPSoC ZCU102 FPGA platform are discussed, and then we introduce our high-speed and lightweight implementation of the well-known AES-128 algorithm, developed on the same FPGA platform, and comparing it with similar solutions already published in the literature. The comparison results indicate that our AES-128 implementation enables efficient hardware usage for a given data-rate (up to 28.16 Gbit/s), resulting in higher efficiency (8.64 Mbps/slice) than other considered solutions. Finally, the applications of the ZCU102 platform for high-speed processing are explored, such as image and signal processing, visual recognition, and hardware resource management

    Energy and throughput aware fuzzy logic based reconfiguration for MPSoCs

    Get PDF
    Multicore architectures offer an amount of parallelism that is often underutilized, as a result these underutilized resources become a liability instead of advantage. Inefficient resource sharing on the chip can have a negative impact on the performance of an application and may result in greater energy consumption. A large body of research now focuses on reconfigurable multicore architectures in order to support algorithms to find optimal solutions for improved energy and throughput balance. An ideal system would be able to optimize such reconfigurable systems to a level that optimum resources are allocated to a particular workload and all the other underutilized resources remain inactive for greater energy savings. This paper presents a fuzzy logic based reconfiguration engine targeted to optimize a multicore architecture according to the workload requirements for optimum balance between power and performance of the system. The proposed fuzzy logic reconfiguration engine is designed around a 16-core SCMP architecture comprising of reconfigurable cache memories, power gated cores and adaptive on-chip network routers for minimizing leakage energy effects for inactive components. A coarse grained architecture was selected for being able to reconfigure faster, thus making it feasible to be used for runtime adaptation schemes. The presented architecture is analyzed over a set of OpenMP based parallel benchmarks and results show significant energy savings in all cases

    Electronic System-Level Synthesis Methodologies

    Full text link

    An Enhanced IEEE1588 Clock Synchronization for Link Delays Based on a System-on-Chip Platform

    Get PDF
    The clock synchronization is considered as a key technology in the time-sensitive networking (TSN) of 5G fronthaul. This paper proposes a clock synchronization enhancement method to optimize the link delays, in order to improve synchronization accuracy. First, all the synchronization dates are filtered twice to get the good calculation results in the processor, and then FPGA adjust the timer on the slave side to complete clock synchronization. This method is implemented by Xilinx Zynq UltraScale+ MPSoC (multiprocessor system-on-chip), using FPGA+ARM software and hardware co-design platform. The master and slave output Pulse Per-Second (PPS) signals. The synchronization accuracy was evaluated by measuring the time offset between PPS signals. Contraposing the TSN, this paper compares the performance of the proposed scheme with some previous methods to show the efficacy of the proposed work. The results show that the slave clock of proposed method is synchronized with the master clock, leading to better robustness and significant improvement in accuracy, with time offset within the range of 40 nanoseconds. This method can be applied to the time synchronization of the 5G open fronthaul network and meets some special service needs in 5G communication

    Multiprocessor System-on-Chips based Wireless Sensor Network Energy Optimization

    Get PDF
    Wireless Sensor Network (WSN) is an integrated part of the Internet-of-Things (IoT) used to monitor the physical or environmental conditions without human intervention. In WSN one of the major challenges is energy consumption reduction both at the sensor nodes and network levels. High energy consumption not only causes an increased carbon footprint but also limits the lifetime (LT) of the network. Network-on-Chip (NoC) based Multiprocessor System-on-Chips (MPSoCs) are becoming the de-facto computing platform for computationally extensive real-time applications in IoT due to their high performance and exceptional quality-of-service. In this thesis a task scheduling problem is investigated using MPSoCs architecture for tasks with precedence and deadline constraints in order to minimize the processing energy consumption while guaranteeing the timing constraints. Moreover, energy-aware nodes clustering is also performed to reduce the transmission energy consumption of the sensor nodes. Three distinct problems for energy optimization are investigated given as follows: First, a contention-aware energy-efficient static scheduling using NoC based heterogeneous MPSoC is performed for real-time tasks with an individual deadline and precedence constraints. An offline meta-heuristic based contention-aware energy-efficient task scheduling is developed that performs task ordering, mapping, and voltage assignment in an integrated manner. Compared to state-of-the-art scheduling our proposed algorithm significantly improves the energy-efficiency. Second, an energy-aware scheduling is investigated for a set of tasks with precedence constraints deploying Voltage Frequency Island (VFI) based heterogeneous NoC-MPSoCs. A novel population based algorithm called ARSH-FATI is developed that can dynamically switch between explorative and exploitative search modes at run-time. ARSH-FATI performance is superior to the existing task schedulers developed for homogeneous VFI-NoC-MPSoCs. Third, the transmission energy consumption of the sensor nodes in WSN is reduced by developing ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called Novel Ranked Based Clustering (NRC). In cluster formation parameters such as residual energy, distance parameters, and workload on CHs are considered to improve LT of the network. The results prove that ARSH-FATI-CHS outperforms other state-of-the-art clustering algorithms in terms of LT.University of Derby, Derby, U

    Energy Aware Runtime Systems for Elastic Stream Processing Platforms

    Get PDF
    Following an invariant growth in the required computational performance of processors, the multicore revolution started around 20 years ago. This revolution was mainly an answer to power dissipation constraints restricting the increase of clock frequency in single-core processors. The multicore revolution not only brought in the challenge of parallel programming, i.e. being able to develop software exploiting the entire capabilities of manycore architectures, but also the challenge of programming heterogeneous platforms. The question of “on which processing element to map a specific computational unit?”, is well known in the embedded community. With the introduction of general-purpose graphics processing units (GPGPUs), digital signal processors (DSPs) along with many-core processors on different system-on-chip platforms, heterogeneous parallel platforms are nowadays widespread over several domains, from consumer devices to media processing platforms for telecom operators. Finding mapping together with a suitable hardware architecture is a process called design-space exploration. This process is very challenging in heterogeneous many-core architectures, which promise to offer benefits in terms of energy efficiency. The main problem is the exponential explosion of space exploration. With the recent trend of increasing levels of heterogeneity in the chip, selecting the parameters to take into account when mapping software to hardware is still an open research topic in the embedded area. For example, the current Linux scheduler has poor performance when mapping tasks to computing elements available in hardware. The only metric considered is CPU workload, which as was shown in recent work does not match true performance demands from the applications. Doing so may produce an incorrect allocation of resources, resulting in a waste of energy. The origin of this research work comes from the observation that these approaches do not provide full support for the dynamic behavior of stream processing applications, especially if these behaviors are established only at runtime. This research will contribute to the general goal of developing energy-efficient solutions to design streaming applications on heterogeneous and parallel hardware platforms. Streaming applications are nowadays widely spread in the software domain. Their distinctive characiteristic is the retrieving of multiple streams of data and the need to process them in real time. The proposed work will develop new approaches to address the challenging problem of efficient runtime coordination of dynamic applications, focusing on energy and performance management.Efter en oförĂ€nderlig tillvĂ€xt i prestandakrav hos processorer, började den flerkĂ€rniga processor-revolutionen för ungefĂ€r 20 Ă„r sedan. Denna revolution skedde till största del som en lösning till begrĂ€nsningar i energieffekten allt eftersom klockfrekvensen kontinuerligt höjdes i en-kĂ€rniga processorer. Den flerkĂ€rniga processor-revolutionen medförde inte enbart utmaningen gĂ€llande parallellprogrammering, m.a.o. förmĂ„gan att utveckla mjukvara som anvĂ€nder sig av alla delelement i de flerkĂ€rniga processorerna, men ocksĂ„ utmaningen med programmering av heterogena plattformar. FrĂ„gestĂ€llningen ”pĂ„ vilken processorelement skall en viss berĂ€kning utföras?” Ă€r vĂ€l kĂ€nt inom ramen för inbyggda datorsystem. Efter introduktionen av grafikprocessorer för allmĂ€nna berĂ€kningar (GPGPU), signalprocesserings-processorer (DSP) samt flerkĂ€rniga processorer pĂ„ olika system-on-chip plattformar, Ă€r heterogena parallella plattformar idag omfattande inom mĂ„nga domĂ€ner, frĂ„n konsumtionsartiklar till mediaprocesseringsplattformar för telekommunikationsoperatörer. Processen att placera berĂ€kningarna pĂ„ en passande hĂ„rdvaruplattform kallas för utforskning av en designrymd (design-space exploration). Denna process Ă€r mycket utmanande för heterogena flerkĂ€rniga arkitekturer, och kan medföra fördelar nĂ€r det gĂ€ller energieffektivitet. Det största problemet Ă€r att de olika valmöjligheterna i designrymden kan vĂ€xa exponentiellt. Enligt den nuvarande trenden som förespĂ„r ökad heterogeniska aspekter i processorerna Ă€r utmaningen att hitta den mest passande placeringen av berĂ€kningarna pĂ„ hĂ„rdvaran Ă€nnu en forskningsfrĂ„ga inom ramen för inbyggda datorsystem. Till exempel, den nuvarande schemalĂ€ggaren i Linux operativsystemet Ă€r inkapabel att hitta en effektiv placering av berĂ€kningarna pĂ„ den underliggande hĂ„rdvaran. Det enda mĂ€tsĂ€ttet som anvĂ€nds Ă€r processorns belastning vilket, som visats i tidigare forskning, inte motsvarar den verkliga prestandan i applikationen. AnvĂ€ndning av detta mĂ€tsĂ€tt vid resursallokering resulterar i slöseri med energi. Denna forskning hĂ€rstammar frĂ„n observationerna att dessa tillvĂ€gagĂ„ngssĂ€tt inte stöder det dynamiska beteendet hos ström-processeringsapplikationer (stream processing applications), speciellt om beteendena bara etableras vid körtid. Denna forskning kontribuerar till det allmĂ€nna mĂ„let att utveckla energieffektiva lösningar för ström-applikationer (streaming applications) pĂ„ heterogena flerkĂ€rniga hĂ„rdvaruplattformar. Ström-applikationer Ă€r numera mycket vanliga i mjukvarudomĂ€n. Deras distinkta karaktĂ€r Ă€r inlĂ€sning av flertalet dataströmmar, och behov av att processera dem i realtid. Arbetet i denna forskning understöder utvecklingen av nya sĂ€tt för att lösa det utmanade problemet att effektivt koordinera dynamiska applikationer i realtid och fokus pĂ„ energi- och prestandahantering

    Thermal aware task assignment for multicore processors using genetic algorithm

    Get PDF
    Microprocessor power and thermal density are increasing exponentially. The reliability of the processor declined, cooling costs rose, and the processor's lifespan was shortened due to an overheated processor and poor thermal management like thermally unbalanced processors. Thus, the thermal management and balancing of multi-core processors are extremely crucial. This work mostly focuses on a compact temperature model of multicore processors. In this paper, a novel task assignment is proposed using a genetic algorithm to maintain the thermal balance of the cores, by considering the energy expended by each task that the core performs. And expecting the cores’ temperature using the hotspot simulator. The algorithm assigns tasks to the processors depending on the task parameters and current cores’ temperature in such a way that none of the tasks’ deadlines are lost for the earliest deadline first (EDF) scheduling algorithm. The mathematical model was derived, and the simulation results showed that the highest temperature difference between the cores is 8 °C for approximately 14 seconds of simulation. These results validate the effectiveness of the proposed algorithm in managing the hotspot and reducing both temperature and energy consumption in multicore processors

    A Model-Based Development and Verification Framework for Distributed System-on-Chip Architecture

    Get PDF
    The capabilities and thus, design complexity of VLSI-based embedded systems have increased tremendously in recent years, riding the wave of Moore’s law. The time-to-market requirements are also shrinking, imposing challenges to the designers, which in turn, seek to adopt new design methods to increase their productivity. As an answer to these new pressures, modern day systems have moved towards on-chip multiprocessing technologies. New architectures have emerged in on-chip multiprocessing in order to utilize the tremendous advances of fabrication technology. Platform-based design is a possible solution in addressing these challenges. The principle behind the approach is to separate the functionality of an application from the organization and communication architecture of hardware platform at several levels of abstraction. The existing design methodologies pertaining to platform-based design approach don’t provide full automation at every level of the design processes, and sometimes, the co-design of platform-based systems lead to sub-optimal systems. In addition, the design productivity gap in multiprocessor systems remain a key challenge due to existing design methodologies. This thesis addresses the aforementioned challenges and discusses the creation of a development framework for a platform-based system design, in the context of the SegBus platform - a distributed communication architecture. This research aims to provide automated procedures for platform design and application mapping. Structural verification support is also featured thus ensuring correct-by-design platforms. The solution is based on a model-based process. Both the platform and the application are modeled using the Unified Modeling Language. This thesis develops a Domain Specific Language to support platform modeling based on a corresponding UML profile. Object Constraint Language constraints are used to support structurally correct platform construction. An emulator is thus introduced to allow as much as possible accurate performance estimation of the solution, at high abstraction levels. VHDL code is automatically generated, in the form of “snippets” to be employed in the arbiter modules of the platform, as required by the application. The resulting framework is applied in building an actual design solution for an MP3 stereo audio decoder application.Siirretty Doriast

    Efficient Power Management for Heterogeneous Multi-Core Architectures

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Time synchronization for an emulated CAN device on a Multi-Processor System on Chip

    Get PDF
    The increasing number of applications implemented on modern vehicles leads to the use of multi-core platforms in the automotive field. As the number of I/O interfaces offered by these platforms is typically lower than the number of integrated applications, a solution is needed to provide access to the peripherals, such as the Controller Area Network (CAN), to all applications. Emulation and virtualization can be used to implement and share a CAN bus among multiple applications. Furthermore, cyber-physical automotive applications often require time synchronization. A time synchronization protocol on CAN has been recently introduced by AUTOSAR. In this article we present how multiple applications can share a CAN port, which can be on the local processor tile or on a remote tile. Each application can access a local time base, synchronized over CAN, using the AUTOSAR Application Programming Interface (API). We evaluate our approach with four emulation and virtualization examples, trading the number of applications per core with the speed of the software emulated CAN bus.</p
    • 

    corecore