128 research outputs found

    Solutions of a Quadratic Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems

    Get PDF
    Given k pairs of complex numbers and vectors (closed under conjugation), we consider the inverse quadratic eigenvalue problem of constructing n×n real matrices M, D, G, and K, where M>0, K and D are symmetric, and G is skew-symmetric, so that the quadratic pencil Q(λ)=λ2M+λ(D+G)+K has the given k pairs as eigenpairs. First, we construct a general solution to this problem with k≤n. Then, with the special properties D=0 and K<0, we construct a particular solution. Numerical results illustrate these solutions

    Paradoxes of dissipation-induced destabilization or who opened Whitney's umbrella?

    Full text link
    The paradox of destabilization of a conservative or non-conservative system by small dissipation, or Ziegler's paradox (1952), has stimulated an ever growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations. Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary. What is less known is that the first complete explanation of Ziegler's paradox by means of the Whitney umbrella singularity dates back to 1956. We revisit this undeservedly forgotten pioneering result by Oene Bottema that outstripped later findings for about half a century. We discuss subsequent developments of the perturbation analysis of dissipation-induced instabilities and applications over this period, involving structural stability of matrices, Krein collision, Hamilton-Hopf bifurcation and related bifurcations.Comment: 35 pages, 11 figure

    A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems

    Get PDF
    For conservative mechanical systems, the so-called Caughey series are known to define the class of damping matrices that preserve eigenspaces. In particular, for finite-dimensional systems, these matrices prove to be a polynomial of one reduced matrix, which depends on the mass and stiffness matrices. Damping is ensured whatever the eigenvalues of the conservative problem if and only if the polynomial is positive for positive scalar values. This paper first recasts this result in the port-Hamiltonian framework by introducing a port variable corresponding to internal energy dissipation (resistive element). Moreover, this formalism naturally allows to cope with systems including gyroscopic effects (gyrators). Second, generalizations to the infinite-dimensional case are considered. They consists of extending the previous polynomial class to rational functions and more general functions of operators (instead of matrices), once the appropriate functional framework has been defined. In this case, the resistive element is modelled by a given static operator, such as an elliptic PDE. These results are illustrated on several PDE examples: the Webster horn equation, the Bernoulli beam equation; the damping models under consideration are fluid, structural, rational and generalized fractional Laplacian or bi-Laplacian

    Study of the vibration behavior of rotatory blades using the Finite Element Method

    Get PDF
    The physics lying behind rotordynamics is complex to model, so that in many cases numerical processing is the only feasible approach. Being rotordynamics a field of great interest in the aerospace industry, the efforts devoted to its understanding are increasing day by day. Following this tendency, the aim of the present study is to develop a simplified elastodynamic model for the case of rotating structures such that can be addressed through numerical tools, built using the finite element method. For the purpose of analysing the vibration phenomena, modal decomposition and numerical integration have been taken advantage from. In this context, it has been found that the singular value decomposition could be applied in structural analysis to extract dominant displacement fluctuations, allowing the unfolding of global properties of the dynamic response. In the present report, the singular value decomposition has been applied to cantilever beams undergoing a single rotation, giving rise to reasonably satisfactory results

    MODEL UPDATING AND STRUCTURAL HEALTH MONITORING OF HORIZONTAL AXIS WIND TURBINES VIA ADVANCED SPINNING FINITE ELEMENTS AND STOCHASTIC SUBSPACE IDENTIFICATION METHODS

    Get PDF
    Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model

    Wind Turbine Rotors with Active Vibration Control

    Get PDF

    From rotating fluid masses and Ziegler's paradox to Pontryagin- and Krein spaces and bifurcation theory

    Get PDF
    Three classical systems, the Kelvin gyrostat, the Maclaurin spheroids, and the Ziegler pendulum have directly inspired development of the theory of Pontryagin and Krein spaces with indefinite metric and singularity theory as independent mathematical topics, not to mention stability theory and nonlinear dynamics. From industrial applications in shipbuilding, turbomachinery, and artillery to fundamental problems of astrophysics, such as asteroseismology and gravitational radiation —- that is the range of phenomena involving the Krein collision of eigenvalues, dissipation-induced instabilities, and spectral and geometric singularities on the neutral stability surfaces, such as the famous Whitney's umbrella
    • …
    corecore