287 research outputs found

    Ultrafast electrooptic dual-comb interferometry

    Get PDF
    The femtosecond laser frequency comb has enabled the 21st century revolution in optical synthesis and metrology. A particularly compelling technique that relies on the broadband coherence of two laser frequency combs is dual-comb interferometry. This method is rapidly advancing the field of optical spectroscopy and empowering new applications, from nonlinear microscopy to laser ranging. Up to now, most dual-comb interferometers were based on modelocked lasers, whose repetition rates have restricted the measurement speed to ~ kHz. Here we demonstrate a novel dual-comb interferometer that is based on electrooptic frequency comb technology and measures consecutive complex spectra at a record-high refresh rate of 25 MHz. These results pave the way for novel scientific and metrology applications of frequency comb generators beyond the realm of molecular spectroscopy, where the measurement of ultrabroadband waveforms is of paramount relevance

    All-polarization-maintaining linear cavity fiber lasers mode-locked by nonlinear polarization evolution in stretched pulse regime

    Full text link
    Nonlinear polarization evolution (NPE) is among the most advanced techniques for obtaining ultrashort pulses with excellent optical performance. However, it is challenging to design environmentally stable NPE fiber oscillators using only polarization-maintaining (PM) fibers. Here, we use the same PM fiber and non-reciprocal phase shifter to design two different devices, which are capable of acting as effective NPE saturable absorbers (SAs) in two all-PM linear cavity fiber lasers. These two laser setups differ in the position of the non-reciprocal phase shifter, the presence of which is crucial for the proposed fiber lasers to reduce their mode-locking thresholds and achieve high repetition rates above 100 MHz. The mode-locking principle and pulse evolution in the laser cavity are investigated theoretically. The first all-PM fiber oscillator emits sub-200 fs stretched pulses with low peak powers. The second oscillator, with a simpler architecture, directly delivers stretched pulses with high peak powers, the spectral bandwidth greater than 30 nm, and the pulse duration less than 90 fs. To the best of our knowledge, 79 fs achieved in this design is the shortest pulse duration provided by PM fiber lasers using NPE mode-lockers.Comment: to be published in J. Lightwave Tec
    corecore