1,345 research outputs found

    Discrete Particle Swarm Optimization for the minimum labelling Steiner tree problem

    Get PDF
    Particle Swarm Optimization is an evolutionary method inspired by the social behaviour of individuals inside swarms in nature. Solutions of the problem are modelled as members of the swarm which fly in the solution space. The evolution is obtained from the continuous movement of the particles that constitute the swarm submitted to the effect of the inertia and the attraction of the members who lead the swarm. This work focuses on a recent Discrete Particle Swarm Optimization for combinatorial optimization, called Jumping Particle Swarm Optimization. Its effectiveness is illustrated on the minimum labelling Steiner tree problem: given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes, whose edges have the smallest number of distinct labels

    Adaptive primal-dual genetic algorithms in dynamic environments

    Get PDF
    This article is placed here with permission of IEEE - Copyright @ 2010 IEEERecently, there has been an increasing interest in applying genetic algorithms (GAs) in dynamic environments. Inspired by the complementary and dominance mechanisms in nature, a primal-dual GA (PDGA) has been proposed for dynamic optimization problems (DOPs). In this paper, an important operator in PDGA, i.e., the primal-dual mapping (PDM) scheme, is further investigated to improve the robustness and adaptability of PDGA in dynamic environments. In the improved scheme, two different probability-based PDM operators, where the mapping probability of each allele in the chromosome string is calculated through the statistical information of the distribution of alleles in the corresponding gene locus over the population, are effectively combined according to an adaptive Lamarckian learning mechanism. In addition, an adaptive dominant replacement scheme, which can probabilistically accept inferior chromosomes, is also introduced into the proposed algorithm to enhance the diversity level of the population. Experimental results on a series of dynamic problems generated from several stationary benchmark problems show that the proposed algorithm is a good optimizer for DOPs.This work was supported in part by the National Nature Science Foundation of China (NSFC) under Grant 70431003 and Grant 70671020, by the National Innovation Research Community Science Foundation of China under Grant 60521003, by the National Support Plan of China under Grant 2006BAH02A09, by the Engineering and Physical Sciences Research Council (EPSRC) of U.K. under Grant EP/E060722/1, and by the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    Mixed integer programming and adaptive problem solver learned by landscape analysis for clinical laboratory scheduling

    Full text link
    This paper attempts to derive a mathematical formulation for real-practice clinical laboratory scheduling, and to present an adaptive problem solver by leveraging landscape structures. After formulating scheduling of medical tests as a distributed scheduling problem in heterogeneous, flexible job shop environment, we establish a mixed integer programming model to minimize mean test turnaround time. Preliminary landscape analysis sustains that these clinics-orientated scheduling instances are difficult to solve. The search difficulty motivates the design of an adaptive problem solver to reduce repetitive algorithm-tuning work, but with a guaranteed convergence. Yet, under a search strategy, relatedness from exploitation competence to landscape topology is not transparent. Under strategies that impose different-magnitude perturbations, we investigate changes in landscape structure and find that disturbance amplitude, local-global optima connectivity, landscape's ruggedness and plateau size fairly predict strategies' efficacy. Medium-size instances of 100 tasks are easier under smaller-perturbation strategies that lead to smoother landscapes with smaller plateaus. For large-size instances of 200-500 tasks, extant strategies at hand, having either larger or smaller perturbations, face more rugged landscapes with larger plateaus that impede search. Our hypothesis that medium perturbations may generate smoother landscapes with smaller plateaus drives our design of this new strategy and its verification by experiments. Composite neighborhoods managed by meta-Lamarckian learning show beyond average performance, implying reliability when prior knowledge of landscape is unknown

    Optimal Microgrid Topology Design and Siting of Distributed Generation Sources Using a Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm

    Get PDF
    n this work, a problem of optimal placement of renewable generation and topology design for a Microgrid (MG) is tackled. The problem consists of determining the MG nodes where renewable energy generators must be optimally located and also the optimization of the MG topology design, i.e., deciding which nodes should be connected and deciding the lines’ optimal cross-sectional areas (CSA). For this purpose, a multi-objective optimization with two conflicting objectives has been used, utilizing the cost of the lines, C, higher as the lines’ CSA increases, and the MG energy losses, E, lower as the lines’ CSA increases. To characterize generators and loads connected to the nodes, on-site monitored annual energy generation and consumption profiles have been considered. Optimization has been carried out by using a novel multi-objective algorithm, the Multi-objective Substrate Layers Coral Reefs Optimization algorithm (Mo-SL-CRO). The performance of the proposed approach has been tested in a realistic simulation of a MG with 12 nodes, considering photovoltaic generators and micro-wind turbines as renewable energy generators, as well as the consumption loads from different commercial and industrial sites. We show that the proposed Mo-SL-CRO is able to solve the problem providing good solutions, better than other well-known multi-objective optimization techniques, such as NSGA-II or multi-objective Harmony Search algorithm.This research was partially funded by Ministerio de Economía, Industria y Competitividad, project number TIN2017-85887-C2-1-P and TIN2017-85887-C2-2-P, and by the Comunidad Autónoma de Madrid, project number S2013ICE-2933_02

    No-regret Dynamics and Fictitious Play

    Full text link
    Potential based no-regret dynamics are shown to be related to fictitious play. Roughly, these are epsilon-best reply dynamics where epsilon is the maximal regret, which vanishes with time. This allows for alternative and sometimes much shorter proofs of known results on convergence of no-regret dynamics to the set of Nash equilibria
    • 

    corecore