912 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Design and implementation of a function block-based holonic control architecture for a new generation flexible manufacturing system

    Get PDF
    In this research work a control architecture which gives response to the requirements of new generation of flexible manufacturing systems in terms of flexibility, reconfigurability, robustness and autonomy is designed and implemented. To do so the main principles of the Holonic Manufacturing paradigm are applied using the IEC61499 function block (FB) technology. Unlike other similar research proposals, in this work FBs are not relegated to low-level control but are used to model manufacturing execution and control high-level control tasks. This is done with the objective of evaluating the viability of using FBs to develop holonic architectures in comparison to more established technologies like multi-agent systems. Moreover, the proposed control architecture also focuses on better integrating and exploiting the products’ information to enhance its flexibility and adaptability. For this STEP-NC (ISO14649) is used to model richer process plans which include manufacturing alternatives and could be easily integrated in the control itself

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    Reconfigurable production control systems: beyond ADACOR

    Get PDF
    In the recent evolution of production control systems, the emergence of decentralized systems capable of dealing with the rapid changes in the production environment better than the traditional centralized architectures has been one of the most significant developments. The agent-based and holonic paradigms symbolize this approach, and ADACOR holonic control architecture is a successful example of such a system. In this paper, authors discusses the current challenges and the way to go in the direction of new, reconfigurable, evolvable and ubiquitous systems, able to respond to current production environment demands and variability

    Analysis and evaluation of multi-agent systems for digital production planning and control

    Get PDF
    Industrial manufacturing companies have different IT control functions that can be represented with a so-called hierarchical automation pyramid. While these conventional software systems especially support the mass production with consistent demand, the future project “Industry 4.0” focuses on customer-oriented and adaptable production processes. In order to move from conventional production systems to a factory of the future, the control levels must be redistributed. With the help of cyber-physical production systems, an interoperable architecture must be, implemented which removes the hierarchical connection of the former control levels. The accompanied digitalisation of industrial companies makes the transition to modular production possible. At the same time, the requirements for production planning and control are increasing, which can be solved with approaches such as multi-agent systems (MASs). These software solutions are autonomous and intelligent objects with a distinct collaborative ability. There are different modelling methods, communication and interaction structures, as well as different development frameworks for these new systems. Since multi-agent systems have not yet been established as an industrial standard due to their high complexity, they are usually only tested in simulations. In this bachelor thesis, a detailed literature review on the topic of MASs in the field of production planning and control is presented. In addition, selected multi-agent approaches are evaluated and compared using specific classification criteria. In addition, the applicability of using these systems in digital and modular production is assessed

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port

    Controlling hazards and safety in complex systems: a multi-layered part-whole approach to system safety

    Get PDF
    The behavior of complex dependable systems poses severe safety issues due to hazards which may result from incorrect and unpredictable behavior. In order to prevent such hazards, system behavior has to be specified and checked incrementally, in order to defeat the overall system\u2019s complexity. Modularity in system design is however not trivial due to the intrinsic monolithic nature of the control loop, typical of such systems. An additional problem is given by the fact that the current modeling paradigm tends at introducing additional interactive complexity due to the direct communication and synchronization mechanism among decomposed modules. It can be shown, however, that modular decomposition is feasible by revising the current communication and interaction paradigm. Physical interactions in physical systems denote in fact less evident conceptual structures, which host the overall interaction and synchronization knowledge among the component parts. By introducing additional system entities with the aim of hosting such knowledge in a localized and compact manner, we obtain a part-whole hierarchy of systems, called holarchy. Such systems are, at the same time, both parts and wholes within a holarchy, thus giving a formal characterization to Koestler\u2019s holons
    corecore