1,110 research outputs found

    Collision avoidance strategies for unmanned aerial vehicles in formation flight

    Get PDF
    Collision avoidance strategies for multiple UAVs (Unmanned Aerial Vehicles) based on geometry are investigated in this study. The proposed strategies allow a group of UAVs to avoid obstacles and separate if necessary through a simple algorithm with low computation by expanding the collision-cone approach to formation of UAVs. The geometric approach uses line-of-sight vectors and relative velocity vectors where dynamic constraints are included in the formation. Each UAV can determine which plane and direction are available for collision avoidance. An analysis is performed to define an envelope for collision avoidance, where angular rate limits and obstacle detection range limits are considered. Based on the collision avoidance envelope, each UAV in a formation determines whether the formation can be maintained or not while avoiding obstacles. Numerical simulations are performed to demonstrate the performance of the proposed strategies

    UAV group formation collision avoidance method based on second-order consensus algorithm and improved artificial potential field

    Get PDF
    The problem of collision avoidance of an unmanned aerial vehicle (UAV) group is studied in this paper. A collision avoidance method of UAV group formation based on second-order consensus algorithm and improved artificial potential field is proposed. Based on the method, the UAV group can form a predetermined formation from any initial state and fly to the target position in normal flight, and can avoid collision according to the improved smooth artificial potential field method when encountering an obstacle. The UAV group adopts the "leader-follower" strategy, that is, the leader UAV is the controller and flies independently according to the mission requirements, while the follower UAV follows the leader UAV based on the second-order consensus algorithm and formations gradually form during the flight. Based on the second-order consensus algorithm, the UAV group can achieve formation maintenance easily and the Laplacian matrix used in the algorithm is symmetric for an undirected graph. In the process of obstacle avoidance, the improved artificial potential field method can solve the jitter problem that the traditional artificial potential field method causes for the UAV and avoids violent jitter. Finally, simulation experiments of two scenarios were designed to verify the collision avoidance effect and formation retention effect of static obstacles and dynamic obstacles while the two UAV groups fly in opposite symmetry in the dynamic obstacle scenario. The experimental results demonstrate the effectiveness of the proposed method

    A reformulation of collision avoidance algorithm based on artificial potential fields for fixed-wing UAVs in a dynamic environment

    Full text link
    As mini UAVs become increasingly useful in the civilian work domain, the need for a method for them to operate safely in a cluttered environment is growing, especially for fixed-wing UAVs as they are incapable of following the stop-decide-execute methodology. This paper presents preliminary research to design a reactive collision avoidance algorithm based on the improved definition of the repulsive forces used in the Artificial potential field algorithms to allow feasible and safe navigation of fixed-wing UAVs in cluttered, dynamic environments. We present simulation results of the improved definition in multiple scenarios, and we have also discussed possible future studies to improve upon these results.Comment: This paper presents a preliminary work and is not intended for publicatio

    Hybrid Flocking Control Algorithm with Application to Coordination between Multiple Fixed-wing Aircraft

    Get PDF
    Flocking, as a collective behavior of a group, has been investigated in many areas, and in the recent decade, flocking algorithm design has gained a lot of attention due to its variety of potential applications. Although there are many applications exclusively related to fixed-wing aircraft, most of the theoretical works rarely consider these situations. The fixed-wing aircraft flocking is distinct from the general flocking problems by four practical concerns, which include the nonholonomic constraint, the limitation of speed, the collision avoidance and the efficient use of airspace. None of the existing works have addressed all these concerns. The major difficulty is to take into account the all four concerns simultaneously meanwhile having a relatively mild requirement on the initial states of aircraft. In this thesis, to solve the fixed-wing aircraft flocking problem, a supervisory decentralized control algorithm is proposed. The proposed control algorithm has a switching control structure, which basically includes three modes of control protocol and a state-dependent switching logic. Three modes of decentralized control protocol are designed based on the artificial potential field method, which helps to address the nonholonomic constraint, the limitation of speed and the collision avoidance for appropriate initial conditions. The switching logic is designed based on the invariance property induced by the control modes such that the desirable convergence properties of the flocking behavior and the efficient use of airspace are addressed. The proposed switching logic can avoid the fast mode switching, and the supervisor does not require to perform switchings frequently and respond to the aircraft immediately, which means the desired properties can still be guaranteed with the presence of the dwell time in the supervisor

    Path Planning and Real-Time Collision Avoidance Based on the Essential Visibility Graph

    Get PDF
    This paper deals with a novel procedure to generate optimum flight paths for multiple unmanned aircraft in the presence of obstacles and/or no-fly zones. A real-time collision avoidance algorithm solving the optimization problem as a minimum cost piecewise linear path search within the so-called Essential Visibility Graph (EVG) is first developed. Then, a re-planning procedure updating the EVG over a selected prediction time interval is proposed, accounting for the presence of multiple flying vehicles or movable obstacles. The use of Dubins curves allows obtaining smooth paths, compliant with flight mechanics constraints. In view of possible future applications in hybrid scenarios where both manned and unmanned aircraft share the airspace, visual flight rules compliant with International Civil Aviation Organization (ICAO) Annex II Right of Way were implemented. An extensive campaign of numerical simulations was carried out to test the effectiveness of the proposed technique by setting different operational scenarios of increasing complexity. Results show that the algorithm is always able to identify trajectories compliant with ICAO rules for avoiding collisions and assuring a minimum safety distance as well. Furthermore, the low computational burden suggests that the proposed procedure can be considered a promising approach for real-time applications

    Multi-agent pathfinding for unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs), commonly known as drones, have become more and more prevalent in recent years. In particular, governmental organizations and companies around the world are starting to research how UAVs can be used to perform tasks such as package deliver, disaster investigation and surveillance of key assets such as pipelines, railroads and bridges. NASA is currently in the early stages of developing an air traffic control system specifically designed to manage UAV operations in low-altitude airspace. Companies such as Amazon and Rakuten are testing large-scale drone deliver services in the USA and Japan. To perform these tasks, safe and conflict-free routes for concurrently operating UAVs must be found. This can be done using multi-agent pathfinding (mapf) algorithms, although the correct choice of algorithms is not clear. This is because many state of the art mapf algorithms have only been tested in 2D space in maps with many obstacles, while UAVs operate in 3D space in open maps with few obstacles. In addition, when an unexpected event occurs in the airspace and UAVs are forced to deviate from their original routes while inflight, new conflict-free routes must be found. Planning for these unexpected events is commonly known as contingency planning. With manned aircraft, contingency plans can be created in advance or on a case-by-case basis while inflight. The scale at which UAVs operate, combined with the fact that unexpected events may occur anywhere at any time make both advanced planning and planning on a case-by-case basis impossible. Thus, a new approach is needed. Online multi-agent pathfinding (online mapf) looks to be a promising solution. Online mapf utilizes traditional mapf algorithms to perform path planning in real-time. That is, new routes for UAVs are found while inflight. The primary contribution of this thesis is to present one possible approach to UAV contingency planning using online multi-agent pathfinding algorithms, which can be used as a baseline for future research and development. It also provides an in-depth overview and analysis of offline mapf algorithms with the goal of determining which ones are likely to perform best when applied to UAVs. Finally, to further this same goal, a few different mapf algorithms are experimentally tested and analyzed
    • …
    corecore