22,903 research outputs found

    Automated Measurement of Heavy Equipment Greenhouse Gas Emission: The case of Road/Bridge Construction and Maintenance

    Get PDF
    Road/bridge construction and maintenance projects are major contributors to greenhouse gas (GHG) emissions such as carbon dioxide (CO2), mainly due to extensive use of heavy-duty diesel construction equipment and large-scale earthworks and earthmoving operations. Heavy equipment is a costly resource and its underutilization could result in significant budget overruns. A practical way to cut emissions is to reduce the time equipment spends doing non-value-added activities and/or idling. Recent research into the monitoring of automated equipment using sensors and Internet-of-Things (IoT) frameworks have leveraged machine learning algorithms to predict the behavior of tracked entities. In this project, end-to-end deep learning models were developed that can learn to accurately classify the activities of construction equipment based on vibration patterns picked up by accelerometers attached to the equipment. Data was collected from two types of real-world construction equipment, both used extensively in road/bridge construction and maintenance projects: excavators and vibratory rollers. The validation accuracies of the developed models were tested of three different deep learning models: a baseline convolutional neural network (CNN); a hybrid convolutional and recurrent long shortterm memory neural network (LSTM); and a temporal convolutional network (TCN). Results indicated that the TCN model had the best performance, the LSTM model had the second-best performance, and the CNN model had the worst performance. The TCN model had over 83% validation accuracy in recognizing activities. Using deep learning methodologies can significantly increase emission estimation accuracy for heavy equipment and help decision-makers to reliably evaluate the environmental impact of heavy civil and infrastructure projects. Reducing the carbon footprint and fuel use of heavy equipment in road/bridge projects have direct and indirect impacts on health and the economy. Public infrastructure projects can leverage the proposed system to reduce the environmental cost of infrastructure project

    Promoting Intermodal Connectivity at California’s High Speed Rail Stations

    Get PDF
    High-speed rail (HSR) has emerged as one of the most revolutionary and transformative transportation technologies, having a profound impact on urban-regional accessibility and inter-city travel across Europe, Japan, and more recently China and other Asian countries. One of HSR’s biggest advantages over air travel is that it offers passengers a one-seat ride into the center of major cities, eliminating time-consuming airport transfers and wait times, and providing ample opportunities for intermodal transfers at these locales. Thus, HSR passengers are typically able to arrive at stations that are only a short walk away from central business districts and major tourist attractions, without experiencing any of the stress that car drivers often experience in negotiating such highly congested environments. Such an approach requires a high level of coordination and planning of the infrastructural and spatial aspects of the HSR service, and a high degree of intermodal connectivity. But what key elements can help the US high-speed rail system blend successfully with other existing rail and transit services? That question is critically important now that high-speed rail is under construction in California. The study seeks to understand the requirements for high levels of connectivity and spatial and operational integration of HSR stations and offer recommendations for seamless, and convenient integrated service in California intercity rail/HSR stations. The study draws data from a review of the literature on the connectivity, intermodality, and spatial and operational integration of transit systems; a survey of 26 high-speed rail experts from six different European countries; and an in-depth look of the German and Spanish HSR systems and some of their stations, which are deemed as exemplary models of station connectivity. The study offers recommendations on how to enhance both the spatial and the operational connectivity of high-speed rail systems giving emphasis on four spatial zones: the station, the station neighborhood, the municipality at large, and the region

    The Cowl - v. 80 - n.4 - Oct 1, 2015

    Get PDF
    The Cowl - student newspaper of Providence College. Volume 80 - No. 4 - October 1, 2015. 24 pages

    Performance assessment for mountain bike based on WSN and Cloud Technologies

    Get PDF
    The mountain bike is one of the most used equipment’s in outdoor sports activities. The thesis describes the design and all development and implementation of Performance Assessment for Mountain Bike based on Wireless Sensor Network (WSN) and Cloud Technologies. The work presents a distributed sensing system for cycling assessment-providing data for objective evaluation of the athlete performance during training. Thus a wireless sensor network attached to the sport equipment provides to the athlete and the coach with performance values during practice. The sensors placed in biker equipment’s behave as nodes of a WSN. This is possible with the developing of IoT-based systems in sports, the tracking and monitoring of athletes in their activities has an important role on his formation as bikers and helps to increase performance, through the analyze of each session. The implemented system performs acquisition, processing and transmission, of data using a ZigBee wireless networks that provide also machine-to-machine communication and data storage in a server located in the cloud. As in many cycling applications use the phone as a module to get the values, this work will be a little different making use of phone/tablet to consult information. The information stored on the cloud server is accessed through a mobile application that analyses and correlates all metrics calculated using the training data obtained during practice. Additional information regarding the health status may be also considered. Therefore, the system permits that athletes perform an unlimited number of trainings that can be accessed at any time through the mobile application by the bikers and coach. Based on capability of the system to save a history of the evolution of each athlete during training the system permits to perform appropriate comparisons between different training sessions and different athlete’s performances.A bicicleta de montanha é um dos equipamentos para desportos no exterior mais usada. A tese descreve todo o desenho, desenvolvimento e implementação de Performance Assessment for Mountain Bike based on WSN and Cloud Technologies. Este apresenta um sistema de deteção distribuída para o aumento do desempenho, melhorar a metodologia da prática do ciclismo e para formação de atletas. Para tal foi desenvolvida e anexada uma rede de sensores que está embutida no equipamento do ciclista, através desta rede de sensores sem fios são obtidos os valores respetivos à interação do utilizador e a sua bicicleta, sendo estes apresentados ao treinador e ao próprio ciclista. Os sensores colocados comportam-se como nós de uma rede de sensores sem fios. Isso é possível com o desenvolvimento de sistemas baseados na Internet das coisas no desporto, a observação da movimentação e monitoramento de atletas nas suas atividades tem um papel importante na sua formação como ciclistas e ajuda a aumentar o desempenho. O sistema é baseado numa rede ZigBee sem fios, que permite a comunicação máquina-para-máquina e o armazenamento de dados num servidor localizado na nuvem. Toda a informação na nuvem pode ser acedida através de uma aplicação mobile que analisa e correlaciona todos os valores calculados usando os dados recolhidos durante o treino efetuado por cada ciclista. Como em muitas aplicações de ciclismo estas usam o telefone como um módulo para obter os valores, neste trabalho o caso é diferente fazendo o uso do telefone/tablet para apenas consultar as informações. Alguma informação sobre o ciclista é fornecida para poder efetuar alguns cálculos, relativos à saúde do ciclista, neste caso toda a energia gasta na prática de um determinado treino. Toda esta informação pode ser acedida através de uma aplicação Android e por consequência num dispositivo Android. Com a aplicação desenvolvida é possível observar e processar toda a informação recolhida através dos sensores implementados, a observação dos dados recolhidos pode ser efetuada pelo treinador responsável, como pelo próprio atleta. Portanto, o sistema permite a realização de um ilimitado número de sessões de treino, estes podem ser consultados a qualquer momento através da aplicação móvel. Fazendo com que seja possível manter um histórico da evolução de cada atleta, podendo assim observar e comparar cada sessão de treino, realizada por cada atleta

    Spartan Daily, September 23, 2008

    Get PDF
    Volume 131, Issue 14https://scholarworks.sjsu.edu/spartandaily/10498/thumbnail.jp

    Cyclist performance assessment based on WSN and cloud technologies

    Get PDF
    Mobility in big cities is a growing problem and the use of bicycles has been a solution which, together with new sharing services, helps to motivate users. There are also more and more users practicing sports involving the use of bicycles. It was in this context that the present dissertation was developed, a distributed sensor system for monitoring cyclists. With the support of a wireless sensor network connected to the internet and, using a set of smart sensors as end-nodes, it is possible to obtain data that will help the cyclist to improve his performance. The coach can monitor and evaluate the performance to improve their training sessions. The health status condition during training it is also monitored using cardiac and respiratory assessment sensors. The information from the nodes of the wireless sensor network is uploaded, via the internet connection, to the Firebase platform. An Android mobile application has been developed, this allows trainers to register cyclists, plan routes and observe the results collected by the network. With the inclusion of these technologies, the coach and the athlete may analyze the performance of a session and compare it with the previous training results. New training sessions may be established according to the athlete's needs. The effectiveness of the proposed system was experimentally tested and several results are included in this dissertation.A mobilidade nas grandes cidades é um problema crescente e a utilização das bicicletas tem vindo a ser uma solução que, em conjunto com novos serviços de partilha, ajudam a motivar os utilizadores. Há também cada vez mais utilizadores a praticar desportos que envolvem a utilização da bicicleta. Foi neste contexto que a presente dissertação foi desenvolvida, um sistema de sensores distribuídos para monitorização de ciclistas. Com o suporte de uma rede de sensores sem fios ligada á internet e, utilizando um conjunto de sensores inteligentes como nós, é possível obter dados que vão ajudar o ciclista a melhorar o seu desempenho. O treinador consegue monitorizar e avaliar o desempenho para aperfeiçoar as sessões de treino. A condição do estado de saúde é também monitorizada utilizando sensores de avaliação cardíaca e de respiratória. A informação proveniente dos nós da rede de sensores sem fios é carregada, através da ligação á internet, para a plataforma Firebase. Foi desenvolvida uma aplicação móvel Android, que permite que os treinadores registem ciclistas, planeiem rotas e observem os resultados recolhidos pela rede. Com a inclusão destas tecnologias, o treinador e o ciclista podem analisar o desempenho de uma sessão e compara-lo com os resultados do treino anterior. Podem ser estabelecidas novas sessões de treino de acordo com as necessidades do atleta. A eficácia do sistema proposto foi testada experimentalmente e os vários resultados foram incluídos nesta dissertação

    A Crowdsensing Approach for Deriving Surface Quality of Cycling Infrastructure

    Full text link
    Cities worldwide are trying to increase the modal share of bicycle traffic to address traffic and carbon emission problems. Aside from safety, a key factor for this is the cycling comfort, including the surface quality of cycle paths. In this paper, we propose a novel edge-based crowdsensing method for analyzing the surface quality of bicycle paths using smartphone sensor data: Cyclists record their rides which after preprocessed on their phones before being uploaded to a private cloud backend. There, additional analysis modules aggregate data from all available rides to derive surface quality information which can then used for surface quality-aware routing and planning of infrastructure maintenance.Comment: Accepted for the 11th IEEE International Conference on Cloud Engineering (IC2E 2023

    Bus Rapid Transit: A Handbook for Partners, MTI Report 06-02

    Get PDF
    In April 2005, the Caltrans Division of Research and Innovation (DRI) asked MTI to assist with the research for and publication of a guidebook for use by Caltrans employees who work with local transit agencies and jurisdictions in planning, designing, and operating Bus Rapid Transit (BRT) systems that involve state facilities. The guidebook was also to assist to transit operators, local governments, community residents, and other stakeholders dealing with the development of BRT systems. Several areas in the state have experienced such projects ( San Diego , Los Angeles , San Francisco , and Alameda County ) and DRI wished to use that experience to guide future efforts and identify needed changes in statutes, policies, and other state concerns. Caltrans convened a Task Team from the Divisions of Research and Innovation, Mass Transportation, and Operations, together with stakeholders representing many of those involved with the BRT activities around the state. Prior to MTI’s involvement, this group produced a white paper on the topic, a series of questions, and an outline of the guidebook that MTI was to write. The MTI team conducted case studies of the major efforts in California, along with less developed studies of some of the other BRT programs under development or in early implementation phases around the state. The purpose was to clarify those issues that need to be addressed in the guidebook, as well as to compile information that would identify items needing legislative or regulatory action and items that Caltrans will need to address through district directives or other internal measures. A literature scan was used to develop a bibliography for future reference. The MTI team also developed a draft Caltrans director’s policy document, which provides the basis for Caltrans’ actions. This ultimately developed to be a project within a project. MTI submitted a draft document to Caltrans as a final product from the Institute. Task team members and Caltrans staff and leadership provided extensive review of the draft Bus Rapid Transit: A Handbook for Partners. Caltrans adopted a new Director’s Policy and published the document, BRT Caltrans. The MTI “wraparound” report presented below discusses in more detail the process that was followed to produce the draft report. The process was in many ways as much a project as the report itself
    corecore