1,013 research outputs found

    Simulation and Planning of a 3D Spray Painting Robotic System

    Get PDF
    Nesta dissertação é proposto um sistema robótico 3D de pintura com spray. Este sistema inclui uma simulação realista do spray com precisão suficiente para imitar pintura com spray real. Também inclui um algoritmo otimizado para geração de caminhos que é capaz de pintar projetos 3D não triviais. A simulação parte de CAD 3D ou peças digitalizadas em 3D e produz um efeito visual realista que permite analisar qualitativamente o produto pintado. Também é apresentada uma métrica de avaliação que pontua trajetória de pintura baseada na espessura, uniformidade, tempo e desperdício de tinta.In this dissertation a 3D spray painting robotic system is proposed. This system has realistic spray simulation with sufficient accuracy to mimic real spray painting. It also includes an optimized algorithm for path generation that is capable of painting non trivial 3D designs. The simulation has 3D CAD or 3D scanned input pieces and produces a realistic visual effect that allows qualitative analyses of the painted product. It is also presented an evaluation metric that scores the painting trajectory based on thickness, uniformity, time and waste of paint

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    2차원 균일 커버리지 경로 계획을 위한 효율적 알고리즘

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 공과대학 기계공학부, 2020. 8. 박종우.Coverage path planning (CPP) is widely used in numerous robotic applications. With progressively complex and extensive applications of CPP, automating the planning process has become increasingly important. This thesis proposes an efficient CPP algorithm based on a random sampling scheme for spray painting applications. We have improved on the conventional CPP algorithm by alternately iterating the path generation and node sampling steps. This method can reduce the computational time by reducing the number of sampled nodes. We also suggest a new distance metric called upstream distance to generate reasonable path following given vector field. This induces the path to be aligned with a desired direction. Additionally, one of the machine learning techniques, support vector regression (SVR) is utilized to identify the paint distribution model. This method accurately predict the paint distribution model as a function of the painting parameters. We demonstrate our algorithm on several types of analytic surfaces and compare the results with those of conventional methods. Experiments are conducted to assess the performance of our approach compared to the traditional method.본 논문에서는 2차원 표면의 균일 커버리지 경로 계획을 설명하고 이를 효율적으로 푸는 알고리즘을 제시한다. 우리는 경로 계획 문제를 두 개의 하위 문제로 분리하여 각각 푸는 기존의 방식을 보완하여 두 개의 하위문제를 한 번에 풀면서 계산시간을 줄이는 방법을 제시하였다. 또한 경우에 따라 주어진 벡터 필드와 나란한 방향으로 경로가 생성될 필요가 있는데 이를 위해 거스름 거리(upstream distance)의 개념을 제시하였으며 여행 외판원 문제(Traveling Salesman Problem)를 풀 때 이를 적용하였다. 우리는 차량 도장 응용분야에 균일 커버리지 경로 계획법을 적용하였으며 도장 시스템을 고려하여 균일한 페인트 두께를 보장하는 방법을 같이 제시하였다. 네 가지 타입의 2차원 곡면에 대해 시뮬레이션을 진행하였으며 기존의 방법에 비해 더 적은 계산시간을 요구하면서도 합리적인 수준의 페인트 균일도를 달성함을 검증하였다.1 Introduction 1 1.1 Related Work 3 1.2 Contribution of Our Work 7 1.3 Organization of This Thesis 8 2 Preliminary Background 9 2.1 Elementary Differential Geometry of Surfaces in R3 10 2.1.1 Representation of Surfaces 10 2.1.2 Normal Curvature 10 2.1.3 Shape Operator 12 2.2 Traveling Salesman Problem 15 2.2.1 Definition 15 2.2.2 Variations of the TSP 17 2.2.3 Approximation Algorithm for TSP 19 2.3 Path Planning on Vector Fields 20 2.3.1 Randomized Path Planning 20 2.3.2 Upstream Criterion 20 2.4 Support Vector Regression 21 2.4.1 Single-Output SVR 21 2.4.2 Dual Problem of SVR 23 2.4.3 Kernel for Nonlinear System 25 2.4.4 Multi-Output SVR 26 3 Methods 29 3.1 Efficient Coverage Path Planning on Vector Fields 29 3.1.1 Efficient Node Sampling 31 3.1.2 Divide and Conquer Strategy 32 3.1.3 Upstream Distance 34 3.2 Uniform Coverage Path Planning in Spray Painting Applications 35 3.2.1 Minimum Curvature Direction 35 3.2.2 Learning Paint Deposition Model 36 4 Results 38 4.1 Experimental Setup 38 4.2 Simulation Result 41 4.3 Discussion 41 5 Conclusion 45 Bibliography 47 국문초록 52Maste

    INKJET PRINTING: FACING CHALLENGES AND ITS NEW APPLICATIONS IN COATING INDUSTRY

    Get PDF
    This study is devoted to some of the most important issues for advancing inkjet printing for possible application in the coating industry with a focus on piezoelectric droplet on demand (DOD) inkjet technology. Current problems, as embodied in liquid filament breakup along with satellite droplet formation and reduction in droplet sizes, are discussed and then potential solutions identified. For satellite droplets, it is shown that liquid filament break-up behavior can be predicted by using a combination of two pi-numbers, including the Weber number, We and the Ohnesorge number, Oh, or the Reynolds number, Re, and the Weber number, We. All of these are dependent only on the ejected liquid properties and the velocity waveform at the print-head inlet. These new criteria are shown to have merit in comparison to currently used criteria for identifying filament physical features such as length and diameter that control the formation of subsequent droplets. In addition, this study performs scaling analyses for the design and operation of inkjet printing heads. Because droplet sizes from inkjet nozzles are typically on the order of nozzle dimensions, a numerical simulation is carried out to provide insight into how to reduce droplet sizes by employing a novel input waveform impressed on the print-head liquid inflow without changing the nozzle geometry. A regime map for characterizing the generation of small droplets based on We and a non-dimensional frequency, Ω is proposed and discussed. In an attempt to advance inkjet printing technology for coating purposes, a prototype was designed and then tested numerically. The numerical simulation successfully proved that the proposed prototype could be useful for coating purposes by repeatedly producing mono-dispersed droplets with controllable size and spacing. Finally, the influences of two independent piezoelectric characteristics - the maximum head displacement and corresponding frequency, was investigated to examine the quality of filament breakup quality and favorable piezoelectric displacements and frequencies were identified

    New concepts in automation and robotic technology for surface engineering

    Get PDF
    Nowadays, the use of robots for the automation of process is very common. This is due to the advantages provided: cost reduction, quality increase, high reproducibility, etc. Nevertheless the robots have the disadvantage, that a high initial investment is necessary. Thermal spraying processes use industrial robots for many reasons, some of them are: high control of the process, quality increase, dangerous work environment, etc. The industrial robot can control many parameters during the process; like the trajectory and the velocity of the torch, which have a significant influence on the heat and mass transfer to the piece and coating. Properties such as coating thickness, porosity, micro hardness and thermal stress distribution are therefore significantly influenced by the spraying distance, velocity and trajectory. It is thus necessary to implement new tools, which support robot programming and fulfill the requirements of torch handling for thermal spraying and lacquered operation. Optimized robot programming is necessary for high quality products regarding coating properties and functionality. To optimize the robot programming, different off-line programming tools are used. The off-line programming has the advantages: increase of work safety and efficiency, low time to program, continuous production, etc.Escuela Técnica Superior de Ingeniería IndustrialUniversidad Politécnica de CartagenaInstitute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC; University of Stuttgart

    Multiscale Design And Life-Cycle Based Sustainability Assessment Of Polymer Nanocomposite Coatings

    Get PDF
    In recent years, nanocoatings with exceptionally improved and new performance properties have found numerous applications in the automotive, aerospace, ship-making, chemical, electronics, steel, construction, and many other industries. Especially the formulations providing multiple functionalities to cured paint films are believed to dominate the coatings market in the near future. It has shifted the focus of research towards building sustainable coating recipes which can deliver multiple functionalities through applied films. The challenge to this exciting area of research arrives from the insufficient knowledge about structure-property correlations of nanocoating materials and their design complexity. Experimental efforts have been successful in developing certain types of nanopaints exhibiting improved properties. However, multifunctional nanopaint design optimality is extremely difficult to address if not impossible solely through experiments. In addition to this, the environmental implications and societal risks associated with this growing field of nanotechnology raise several questions related to its sustainable development. This research focuses on the study of a multiscale sustainable nanocoating design which can have the application from novel function envisioning and idea refinement point of view, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications. The nanocoating design is studied using computational simulations of nano- to macro- scale models and sustainability assessment study over the life-cycle. Computational simulations aim at integrating top-down, goals/means, inductive systems engineering and bottom-up, cause and effect, deductive systems engineering approaches for material development. The in-silico paint resin system is a water-dispersible acrylic polymer with hydrophilic nanoparticles incorporated into it. The nano-scale atomistic and micro-scale coarse-grained (CG) level simulations are performed using molecular dynamics methodology to study several structural and morphological features such as effect of polymer molecular weight, polydispersity, rheology, nanoparticle volume fraction, size, shape and chemical nature on the bulk mechanical and self-cleaning properties of the coating film. At macro-scale, a paint spray system which is used for automotive coating application is studied by using CFD-based simulation methodology to generate crucial information about the effects of nanocoating technology on environmental emissions and coating film quality. The cradle-to-grave life-cycle based sustainability assessment study address all the critical issues related to economic benefits, environmental implications and societal effects of nanocoating technology through case studies of automotive coating systems. It is accomplished by identifying crucial correlations among measurable parameters at different stages and developing sustainability indicator matrices for analysis of each stage of life-cycle. The findings from the research can have great potential to draft useful conclusions in favor of future development of coating systems with novel functionalities and improved sustainability

    An experimentally validated technique for the real-time management of wrist singularities in nonredundant anthropomorphic manipulators

    Get PDF
    The automatic management of kinematic singularities, which are typical for trajectories planned in the operational space, is arousing a renewed interest among the scientific community because the most recent strategies make it possible their real-time management. The approach described in this paper allows executing trajectories in the operational space which pass through wrist singularities. It introduces several novelties w.r.t. known alternative strategies. First of all, it is conceived for trajectories which are planned on-the-fly. Secondly, singularities are avoided by changing slightly the tool-frame orientation while strictly preserving both the assigned Cartesian path and time-law. Finally, the approach is effective also for manipulators moving at standard operative speeds and it explicitly handles given limits on joint velocities and accelerations. In this paper an approach proposed in early works is revised in order to make it ready for an industrial implementation. In particular a procedural method is proposed for the tuning of the algorithm, so as to make it more deterministic and to increase the success rates. Furthermore, the singularity avoidance problem is theoretically analyzed in order to devise a necessary condition for the the existence of a solution. Results are experimentally validated through an anthropomorphic industrial manipulator

    Affordable Motion Tracking System for Intuitive Programming of Industrial Robots

    Get PDF
    The paper deals with a lead-through method of programming for industrial robots. The goal is to automatically reproduce 6DoF trajectories of a tool wielded by a human operator demonstrating a motion task. We present a novel motion-tracking system built around the HTC Vive pose estimation system. Our solution allows complete automation of the robot teaching process. Specific algorithmic issues of system calibration and motion data post-processing are also discussed, constituting the paper's theoretical contribution. The motion tracking system is successfully deployed in a pilot application of robot-assisted spray painting

    General techniques for constrained motion planning

    Full text link
    corecore