21 research outputs found

    Multi-sensor acquisition system for noninvasive detection of heart failure

    Get PDF
    To research the possibility of noninvasive detection of heart failure we developed an acquisition system with multiple sensors. The system synchronously measures cardiovascular pulsations, heart sounds and ECG using different types of sensors positioned only on the patient’s body. The system has a modular structure with five modules: 1. Module for controlling the light source (MWLS) 2. Module for data acquisition from fiber optical sensors (FBGA) with the compact optical spectral analyzer 3. Module for the acquisition of hearth sounds (PCG) with four ports for microphones; 4. Module for the acquisition of standard ECG signals; 5. Module for data acquisition from three accelerometers and three photoplethysmography sensors (ACC/PPG)

    Algorithms and systems for home telemonitoring in biomedical applications

    Get PDF
    During the past decades, the interest of the healthcare community shifted from the simple treatment of the diseases towards the prevention and maintenance of a healthy lifestyle. This approach is associated to a reduced cost for the Health Systems, having to face the constantly increased expenditures due to the reduced mortality for chronical diseases and to the progressive population ageing. Nevertheless, the high costs related to hospitalization of patients for monitoring procedures that could be better performed at home hamper the full implementation of this approach in a traditional way. Information and Communication Technology can provide a solution to implement a care model closer to the patient, crossing the physical boundaries of the hospitals and thus allowing to reach also those patients that, for a geographical or social condition, could not access the health services as other luckier subjects. This is the case of telemonitoring systems, whose aim is that of providing monitoring services for some health-related parameters at a distance, by means of custom-designed electronic devices. In this thesis, the specific issues associated to two telemonitoring applications are presented, along with the proposed solutions and the achieved results. The first telemonitoring application considered is the fetal electrocardiography. Non-invasive fetal electrocardiography is the recording of the fetal heart electrical activity using electrodes placed on the maternal abdomen. It can provide important diagnostic parameters, such as the beat-to-beat heart rate variability, whose recurring analysis would be useful in assessing and monitoring fetal health during pregnancy. Long term electrocardiographic monitoring is sustained by the absence of any collateral effects for both the mother and the fetus. This application has been tackled from several perspectives, mainly acquisition and processing. From the acquisition viewpoint a study on different skin treatments, disposable commercial electrodes and textile electrodes has been performed with the aim of improving the signal acquisition quality, while simplifying the measurement setup. From the processing viewpoint, different algorithms have been developed to allow extracting the fetal ECG heart rate, starting from an on-line ICA algorithm or exploiting a subtractive approach to work on recordings acquired with a reduced number of electrodes. The latter, took part to the international "Physionet/Computing in Cardiology Challenge" in 2013 entering into the top ten best-performing open-source algorithms. The improved version of this algorithm is also presented, which would mark the 5th and 4th position in the final ranking related to the fetal heart rate and fetal RR interval measurements performance, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. The research in this field has been carried out in collaboration with the Pediatric Cardiology Unit of the Hospital G. Brotzu in Cagliari, for the acquisition of non-invasive fetal ECG signals from pregnant voluntary patients. The second telemonitoring application considered is the telerehabilitation of the hand. The execution of rehabilitation exercises has been proven to be effective in recovering hand functionality in a wide variety of invalidating diseases, but the lack of standardization and continuous medical control cause the patients neglecting this therapeutic procedures. Telemonitoring the rehabilitation sessions would allow the physician to closely follow the patients' progresses and compliance to the prescribed adapted exercises. This application leads to the development of a sensorized telerehabilitation system for the execution and objective monitoring of therapeutic exercises at the patients' home and of the telemedicine infrastructure that give the physician the opportunity to monitor patients' progresses through parameters summarizing the patients' performance. The proposed non-CE marked medical device, patent pending, underwent a clinical trial, reviewed and approved by the Italian Public Health Department, involving 20 patients with Rheumatoid Arthritis and 20 with Systemic Sclerosis randomly assigned to the experimental or the control arm, enrolled for 12 weeks in a home rehabilitation program. The trial, carried out with the collaboration of the Rheumatology Department of the Policlinico Universitario of Cagliari, revealed promising results in terms of hand functionality recovering, highlighting greater improvements for the patients enrolled in the experimental arm, that use the proposed telerehabilitation system, with respect to those of the control arm, which perform similar rehabilitation exercises using common objects

    Low-Power Human-Machine Interfaces: Analysis And Design

    Get PDF
    Human-Machine Interaction (HMI) systems, once used for clinical applications, have recently reached a broader set of scenarios, such as industrial, gaming, learning, and health tracking thanks to advancements in Digital Signal Processing (DSP) and Machine Learning (ML) techniques. A growing trend is to integrate computational capabilities into wearable devices to reduce power consumption associated with wireless data transfer while providing a natural and unobtrusive way of interaction. However, current platforms can barely cope with the computational complexity introduced by the required feature extraction and classification algorithms without compromising the battery life and the overall intrusiveness of the system. Thus, highly-wearable and real-time HMIs are yet to be introduced. Designing and implementing highly energy-efficient biosignal devices demands a fine-tuning to meet the constraints typically required in everyday scenarios. This thesis work tackles these challenges in specific case studies, devising solutions based on bioelectrical signals, namely EEG and EMG, for advanced hand gesture recognition. The implementation of these systems followed a complete analysis to reduce the overall intrusiveness of the system through sensor design and miniaturization of the hardware implementation. Several solutions have been studied to cope with the computational complexity of the DSP algorithms, including commercial single-core and open-source Parallel Ultra Low Power architectures, that have been selected accordingly also to reduce the overall system power consumption. By further adding energy harvesting techniques combined with the firmware and hardware optimization, the systems achieved self-sustainable operation or a significant boost in battery life. The HMI platforms presented are entirely programmable and provide computational power to satisfy the requirements of the studies applications while employing only a fraction of the CPU resources, giving the perspective of further application more advanced paradigms for the next generation of real-time embedded biosignal processing

    A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator

    Get PDF
    PubMed ID: 26799770Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Web of Science37225623

    Forehead EEG in Support of Future Feasible Personal Healthcare Solutions: Sleep Management, Headache Prevention, and Depression Treatment

    Get PDF
    © 2013 IEEE. There are current limitations in the recording technologies for measuring EEG activity in clinical and experimental applications. Acquisition systems involving wet electrodes are time-consuming and uncomfortable for the user. Furthermore, dehydration of the gel affects the quality of the acquired data and reliability of long-term monitoring. As a result, dry electrodes may be used to facilitate the transition from neuroscience research or clinical practice to real-life applications. EEG signals can be easily obtained using dry electrodes on the forehead, which provides extensive information concerning various cognitive dysfunctions and disorders. This paper presents the usefulness of the forehead EEG with advanced sensing technology and signal processing algorithms to support people with healthcare needs, such as monitoring sleep, predicting headaches, and treating depression. The proposed system for evaluating sleep quality is capable of identifying five sleep stages to track nightly sleep patterns. Additionally, people with episodic migraines can be notified of an imminent migraine headache hours in advance through monitoring forehead EEG dynamics. The depression treatment screening system can predict the efficacy of rapid antidepressant agents. It is evident that frontal EEG activity is critically involved in sleep management, headache prevention, and depression treatment. The use of dry electrodes on the forehead allows for easy and rapid monitoring on an everyday basis. The advances in EEG recording and analysis ensure a promising future in support of personal healthcare solutions

    Development of an embedded EMG-based wristband for hand gesture recognition using machine learning algorithms.

    Get PDF
    With the recent improvement of flexible electronics, wearable devices are becoming more and more non-invasive and comfortable, pervading fitness and health-care applications. Wearable devices allow unobtrusive monitoring of vital signs and physiological parameters, enabling advanced Human Machine Interaction (HMI) as well. On the other hand, battery lifetime remains a challenge especially when they are equipped with bio-medical sensors and not used as simple data logger. In this thesis, we present a flexible wristband, designed on a flexible PCB strip, for real-time EMG-based hand gesture recognition. Experimental results show the accuracy achieved by the algorithm and the system implementation. The proposed wristband executes a Support Vector Machine (SVM) algorithm reaching up to 96% accuracy in recognition of 5 hand gestures collecting data from 5 users. The system targets health-care and HMI applications, and can be employed to monitor patients during rehabilitation from neural traumas as well as to enable a simple gesture control interface (e.g. for smart-watches)

    Device and software for mobile heart monitoring

    Get PDF
    This paper describes a new solution for mobile heart monitoring. This approach is based on the experience of ECG processing algorithms development for diagnostic purposes. The described approach allows developing a new mobile heart monitoring system consisting of ECG recording device, mobile computer (smartphone or tablet) and server (medical database). It is based on specially developed software components (microcontroller program, mobile computer client software and server software). ECG processing algorithms could be used offline without any communication with server. It lets mobile monitoring system inform the user about any signs of dangerous heart condition in ECG. Paper also describes experimental results of J-point detection, energy efficiency of the ECG device, wireless protocol bandwidth and contact break detection. They confirm the efficiency of the proposed technical approaches to mobile heart monitoring for wide range of applications from sports and fitness to monitoring for medical reasons

    An inflatable and wearable wireless system for making 32-channel electroencephalogram measurements

    Full text link
    © 2001-2011 IEEE. Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications

    Wired, wireless and wearable bioinstrumentation for high-precision recording of bioelectrical signals in bidirectional neural interfaces

    Get PDF
    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Furthermore, electrical stimulation of specific target brain regions has been shown to alleviate symptoms of neurological disorders, such as Parkinson’s disease, essential tremor, dystonia, epilepsy etc. In recent years, the traditional practice of continuously stimulating the brain using static stimulation parameters has shifted to the use of disease biomarkers to determine the intensity and timing of stimulation. The main motivation behind closed-loop stimulation is minimization of treatment side effects by providing only the necessary stimulation required within a certain period of time, as determined from a guiding biomarker. Hence, it is clear that high-quality recording of local field potentials (LFPs) or electrocorticographic (ECoG) signals during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording ECoG signals, which are of particular importance in closed-loop DBS and epilepsy DBS. In addition, existing recording systems lack the ability to provide artefact-free high-frequency (> 100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. To address the problem of limited mobility often encountered by patients in the clinic and to provide a wide variety of high-precision sensor data to a closed-loop neurostimulation platform, a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless multi-instrument (55 × 80 mm2) was designed and developed. The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile tool to be utilized in a wide range of applications and environments. Moreover, in order to offer the capability of sensing and stimulating via the same electrode, novel real-time artefact suppression methods that could be used in bidirectional (recording and stimulation) system architectures are proposed and validated. More specifically, a novel, low-noise and versatile analog front-end (AFE), which uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency, is presented. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, the performance of the realised AFE is assessed by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5 – 250 Hz) during stimulation. Finally, a family of tunable hardware filter designs and a novel method for real-time artefact suppression that enables wide-bandwidth biosignal recordings during stimulation are also presented. This work paves the way for the development of miniaturized research tools for closed-loop neuromodulation that use a wide variety of bioelectrical signals as control signals.Open Acces
    corecore