1,338 research outputs found

    Lower matching conjecture, and a new proof of Schrijver's and Gurvits's theorems

    Get PDF
    Friedland's Lower Matching Conjecture asserts that if GG is a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices, and mk(G)m_k(G) denotes the number of matchings of size kk, then mk(G)(nk)2(dpd)n(dp)(dp)np,m_k(G)\geq {n \choose k}^2\left(\frac{d-p}{d}\right)^{n(d-p)}(dp)^{np}, where p=knp=\frac{k}{n}. When p=1p=1, this conjecture reduces to a theorem of Schrijver which says that a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices has at least ((d1)d1dd2)n\left(\frac{(d-1)^{d-1}}{d^{d-2}}\right)^n perfect matchings. L. Gurvits proved an asymptotic version of the Lower Matching Conjecture, namely he proved that lnmk(G)v(G)12(pln(dp)+(dp)ln(1pd)2(1p)ln(1p))+ov(G)(1).\frac{\ln m_k(G)}{v(G)}\geq \frac{1}{2}\left(p\ln \left(\frac{d}{p}\right)+(d-p)\ln \left(1-\frac{p}{d}\right)-2(1-p)\ln (1-p)\right)+o_{v(G)}(1). In this paper, we prove the Lower Matching Conjecture. In fact, we will prove a slightly stronger statement which gives an extra cpnc_p\sqrt{n} factor compared to the conjecture if pp is separated away from 00 and 11, and is tight up to a constant factor if pp is separated away from 11. We will also give a new proof of Gurvits's and Schrijver's theorems, and we extend these theorems to (a,b)(a,b)--biregular bipartite graphs

    Robust Assignments via Ear Decompositions and Randomized Rounding

    Get PDF
    Many real-life planning problems require making a priori decisions before all parameters of the problem have been revealed. An important special case of such problem arises in scheduling problems, where a set of tasks needs to be assigned to the available set of machines or personnel (resources), in a way that all tasks have assigned resources, and no two tasks share the same resource. In its nominal form, the resulting computational problem becomes the \emph{assignment problem} on general bipartite graphs. This paper deals with a robust variant of the assignment problem modeling situations where certain edges in the corresponding graph are \emph{vulnerable} and may become unavailable after a solution has been chosen. The goal is to choose a minimum-cost collection of edges such that if any vulnerable edge becomes unavailable, the remaining part of the solution contains an assignment of all tasks. We present approximation results and hardness proofs for this type of problems, and establish several connections to well-known concepts from matching theory, robust optimization and LP-based techniques.Comment: Full version of ICALP 2016 pape

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs
    corecore