191,766 research outputs found

    Femtosecond real-time probing of reactions. VIII. The bimolecular reaction Br+I2

    Get PDF
    In this paper, we discuss the experimental technique for real-time measurement of the lifetimes of the collision complex of bimolecular reactions. An application to the atom–molecule Br+I_2 reaction at two collision energies is made. Building on our earlier Communication [J. Chem. Phys. 95, 7763 (1991)], we report on the observed transients and lifetimes for the collision complex, the nature of the transition state, and the dynamics near threshold. Classical trajectory calculations provide a framework for deriving the global nature of the reactive potential energy surface, and for discussing the real-time, scattering, and asymptotic (product-state distribution) aspects of the dynamics. These experimental and theoretical results are compared with the extensive array of kinetic, crossed beam, and theoretical studies found in the literature for halogen radical–halogen molecule exchange reactions

    Adaptive Coordination of Distributed Energy Resources in Lossy Power Distribution Systems

    Full text link
    This paper is concerned with the problem of coordinating a set of distributed energy resources (DERs) in a lossy power distribution system to provide frequency regulation services to a bulk power grid with the explicit consideration of system losses. To this end, we formulate the problem as an optimization problem, the objective of which is to minimize some cost function subject to a set of constraints. The formulation requires knowledge of incremental total system losses, which we approximate using the so-called loss factors (LFs) that explicitly capture the impacts of both active and reactive power injections on system losses. The LFs are estimated recursively using power injection measurements; thus, they are adaptive to various phenomena that impact the power system operation. Numerical simulation on a 33-bus distribution test feeder validated the effectiveness of the proposed framework

    Optimal Attack against Cyber-Physical Control Systems with Reactive Attack Mitigation

    Full text link
    This paper studies the performance and resilience of a cyber-physical control system (CPCS) with attack detection and reactive attack mitigation. It addresses the problem of deriving an optimal sequence of false data injection attacks that maximizes the state estimation error of the system. The results provide basic understanding about the limit of the attack impact. The design of the optimal attack is based on a Markov decision process (MDP) formulation, which is solved efficiently using the value iteration method. Using the proposed framework, we quantify the effect of false positives and mis-detections on the system performance, which can help the joint design of the attack detection and mitigation. To demonstrate the use of the proposed framework in a real-world CPCS, we consider the voltage control system of power grids, and run extensive simulations using PowerWorld, a high-fidelity power system simulator, to validate our analysis. The results show that by carefully designing the attack sequence using our proposed approach, the attacker can cause a large deviation of the bus voltages from the desired setpoint. Further, the results verify the optimality of the derived attack sequence and show that, to cause maximum impact, the attacker must carefully craft his attack to strike a balance between the attack magnitude and stealthiness, due to the simultaneous presence of attack detection and mitigation
    • …
    corecore