33,231 research outputs found

    Production of carbon nanotubes by PECVD and their applications to supercapacitors

    Full text link
    Màster en Nanociència i NanotecnologiaPlasma enhanced chemical vapor deposition (PECVD) is a versatile technique to obtain vertically dense-aligned carbon nanotubes (CNTs) at lower temperatures than chemical vapor deposition (CVD). In this work, we used magnetron sputtering to deposit iron layer as a catalyst on silicon wafers. After that, radio frequency (rf) assisted PECVD reactor was used to grow CNTs. They were treated with water plasma and finally covered by MnO2 as dielectric layer in order to use CNTs as electrode for supercapacitors. Optimization of annealing time, reaction time and temperature, water plasma time and MnO2 deposition time were performed to find appropriate conditions to improve the characteristics of supercapacitors. SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), AFM (Atomic Force Microscopy) and Raman spectroscopy were used to characterize obtained electrodes

    Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control

    Get PDF
    The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.close1

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    Pressure Tuning of the Charge Density Wave in the Halogen-Bridged Transition-Metal (MX) Solid Pt2Br6(NH3)4Pt_2Br_6(NH_3)_4

    Full text link
    We report the pressure dependence up to 95 kbar of Raman active stretching modes in the quasi-one-dimensional MX chain solid Pt2Br6(NH3)4Pt_2Br_6(NH_3)_4. The data indicate that a predicted pressure-induced insulator-to-metal transition does not occur, but are consistent with the solid undergoing either a three-dimensional structural distortion, or a transition from a charge-density wave to another broken-symmetry ground state. We show that such a transition cacan be well-modeled within a Peierls-Hubbard Hamiltonian. 1993 PACS: 71.30.+h, 71.45.Lr, 75.30.Fv, 78.30.-j, 81.40.VwComment: 4 pages, ReVTeX 3.0, figures available from the authors on request (Gary Kanner, [email protected]), to be published in Phys Rev B Rapid Commun, REVISION: minor typos corrected, LA-UR-94-246
    corecore