171 research outputs found

    A robust adaptive algebraic multigrid linear solver for structural mechanics

    Full text link
    The numerical simulation of structural mechanics applications via finite elements usually requires the solution of large-size and ill-conditioned linear systems, especially when accurate results are sought for derived variables interpolated with lower order functions, like stress or deformation fields. Such task represents the most time-consuming kernel in commercial simulators; thus, it is of significant interest the development of robust and efficient linear solvers for such applications. In this context, direct solvers, which are based on LU factorization techniques, are often used due to their robustness and easy setup; however, they can reach only superlinear complexity, in the best case, thus, have limited applicability depending on the problem size. On the other hand, iterative solvers based on algebraic multigrid (AMG) preconditioners can reach up to linear complexity for sufficiently regular problems but do not always converge and require more knowledge from the user for an efficient setup. In this work, we present an adaptive AMG method specifically designed to improve its usability and efficiency in the solution of structural problems. We show numerical results for several practical applications with millions of unknowns and compare our method with two state-of-the-art linear solvers proving its efficiency and robustness.Comment: 50 pages, 16 figures, submitted to CMAM

    Preconditioners for state constrained optimal control problems with Moreau-Yosida penalty function

    Get PDF
    Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared to other approaches. In this paper we develop robust preconditioners for the efficient solution of the Newton steps associated with solving the Moreau-Yosida regularized problem. Numerical results illustrate the efficiency of our approach

    Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc

    Full text link
    We describe our software package Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) publicly released recently. BLOPEX is available as a stand-alone serial library, as an external package to PETSc (``Portable, Extensible Toolkit for Scientific Computation'', a general purpose suite of tools for the scalable solution of partial differential equations and related problems developed by Argonne National Laboratory), and is also built into {\it hypre} (``High Performance Preconditioners'', scalable linear solvers package developed by Lawrence Livermore National Laboratory). The present BLOPEX release includes only one solver--the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems. {\it hypre} provides users with advanced high-quality parallel preconditioners for linear systems, in particular, with domain decomposition and multigrid preconditioners. With BLOPEX, the same preconditioners can now be efficiently used for symmetric eigenvalue problems. PETSc facilitates the integration of independently developed application modules with strict attention to component interoperability, and makes BLOPEX extremely easy to compile and use with preconditioners that are available via PETSc. We present the LOBPCG algorithm in BLOPEX for {\it hypre} and PETSc. We demonstrate numerically the scalability of BLOPEX by testing it on a number of distributed and shared memory parallel systems, including a Beowulf system, SUN Fire 880, an AMD dual-core Opteron workstation, and IBM BlueGene/L supercomputer, using PETSc domain decomposition and {\it hypre} multigrid preconditioning. We test BLOPEX on a model problem, the standard 7-point finite-difference approximation of the 3-D Laplacian, with the problem size in the range 10510810^5-10^8.Comment: Submitted to SIAM Journal on Scientific Computin

    A Self-learning Algebraic Multigrid Method for Extremal Singular Triplets and Eigenpairs

    Full text link
    A self-learning algebraic multigrid method for dominant and minimal singular triplets and eigenpairs is described. The method consists of two multilevel phases. In the first, multiplicative phase (setup phase), tentative singular triplets are calculated along with a multigrid hierarchy of interpolation operators that approximately fit the tentative singular vectors in a collective and self-learning manner, using multiplicative update formulas. In the second, additive phase (solve phase), the tentative singular triplets are improved up to the desired accuracy by using an additive correction scheme with fixed interpolation operators, combined with a Ritz update. A suitable generalization of the singular value decomposition is formulated that applies to the coarse levels of the multilevel cycles. The proposed algorithm combines and extends two existing multigrid approaches for symmetric positive definite eigenvalue problems to the case of dominant and minimal singular triplets. Numerical tests on model problems from different areas show that the algorithm converges to high accuracy in a modest number of iterations, and is flexible enough to deal with a variety of problems due to its self-learning properties.Comment: 29 page

    Bootstrap Multigrid for the Laplace-Beltrami Eigenvalue Problem

    Full text link
    This paper introduces bootstrap two-grid and multigrid finite element approximations to the Laplace-Beltrami (surface Laplacian) eigen-problem on a closed surface. The proposed multigrid method is suitable for recovering eigenvalues having large multiplicity, computing interior eigenvalues, and approximating the shifted indefinite eigen-problem. Convergence analysis is carried out for a simplified two-grid algorithm and numerical experiments are presented to illustrate the basic components and ideas behind the overall bootstrap multigrid approach

    Preconditioned Locally Harmonic Residual Method for Computing Interior Eigenpairs of Certain Classes of Hermitian Matrices

    Full text link
    We propose a Preconditioned Locally Harmonic Residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positive definite preconditioning, e.g., based on an approximate inverse of an absolute value of a shifted matrix, introduced in [SISC, 35 (2013), pp. A696-A718]. Our numerical experiments demonstrate that PLHR is efficient and robust for certain classes of large-scale interior eigenvalue problems, involving Laplacian and Hamiltonian operators, especially if memory requirements are tight
    corecore